ZealOS/src/Demo/MagicPairs.CC

422 lines
7.1 KiB
HolyC
Raw Normal View History

2020-02-15 20:01:48 +00:00
/*The magic pairs problem:
Let SumFact(n) be the sum of factors
of n.
Find all n1,n2 in a range such that
SumFact(n1)-n1-1 == n2 and
SumFact(n2)-n2-1 == n1
2020-02-15 20:01:48 +00:00
-----------------------------------------------------
To find SumFact(k), start with prime factorization:
k=(p1^n1)(p2^n2) ... (pN^nN)
THEN,
SumFact(k)=(1+p1+p1^2...p1^n1)*(1+p2+p2^2...p2^n2)*
(1+pN+pN^2...pN^nN)
PROOF:
Do a couple examples -- it's obvious:
48=2^4*3
SumFact(48)=(1+2+4+8+16)*(1+3)=1+2+4+8+16+3+6+12+24+48
75=3*5^2
SumFact(75)=(1+3)*(1+5+25) =1+5+25+3+15+75
2020-02-15 20:01:48 +00:00
Corollary:
SumFact(k)=SumFact(p1^n1)*SumFact(p2^n2)*...*SumFact(pN^nN)
*/
//Primes are needed to sqrt(N). Therefore, we can use U32.
class PowPrime
{
I64 n;
I64 sumfact; //Sumfacts for powers of primes are needed beyond sqrt(N)
2020-02-15 20:01:48 +00:00
};
class Prime
{
U32 prime, pow_count;
PowPrime *pp;
2020-02-15 20:01:48 +00:00
};
I64 *PrimesNew(I64 N, I64 *_sqrt_primes, I64 *_cbrt_primes)
2020-02-15 20:01:48 +00:00
{
I64 i, j, sqrt = Ceil(Sqrt(N)), cbrt = Ceil(N ` (1 / 3.0)),
sqrt_sqrt = Ceil(Sqrt(sqrt)), sqrt_primes = 0, cbrt_primes = 0;
U8 *s = CAlloc((sqrt + 1 + 7) / 8);
Prime *primes, *p;
for (i = 2; i <= sqrt_sqrt; i++)
{
if (!Bt(s, i))
{
j = i * 2;
while (j <= sqrt)
{
Bts(s, j);
j += i;
}
}
}
for (i = 2; i <= sqrt; i++)
if (!Bt(s, i))
{
sqrt_primes++; //Count primes
if (i <= cbrt)
cbrt_primes++;
}
p = primes = CAlloc(sqrt_primes * sizeof(Prime));
for (i = 2; i <= sqrt; i++)
if (!Bt(s, i))
{
p->prime = i;
p++;
}
Free(s);
*_sqrt_primes = sqrt_primes;
*_cbrt_primes = cbrt_primes;
return primes;
2020-02-15 20:01:48 +00:00
}
PowPrime *PowPrimesNew(I64 N, I64 sqrt_primes, Prime *primes, I64 *_num_powprimes)
2020-02-15 20:01:48 +00:00
{
I64 i, j, k, sf, num_powprimes = 0;
Prime *p;
PowPrime *powprimes, *pp;
p = primes;
for (i = 0; i < sqrt_primes; i++)
{
num_powprimes += Floor(Ln(N) / Ln(p->prime));
p++;
}
p = primes;
pp = powprimes = MAlloc(num_powprimes * sizeof(PowPrime));
for (i = 0; i < sqrt_primes; i++)
{
p->pp = pp;
j = p->prime;
k = 1;
sf = 1;
while (j < N)
{
sf += j;
pp->n = j;
pp->sumfact = sf;
j *= p->prime;
pp++;
p->pow_count++;
}
p++;
}
*_num_powprimes = num_powprimes;
return powprimes;
2020-02-15 20:01:48 +00:00
}
I64 SumFact(I64 n, I64 sqrt_primes, Prime *p)
2020-02-15 20:01:48 +00:00
{
I64 i, k, sf = 1;
PowPrime *pp;
if (n < 2)
return 1;
for (i = 0; i < sqrt_primes; i++)
{
k = 0;
while (!(n % p->prime))
{
n /= p->prime;
k++;
}
if (k)
{
pp = p->pp + (k - 1);
sf *= pp->sumfact;
if (n == 1)
return sf;
}
p++;
}
return sf * (1 + n); //Prime
2020-02-15 20:01:48 +00:00
}
Bool TestSumFact(I64 n, I64 target_sf, I64 sqrt_primes, I64 cbrt_primes, Prime *p)
2020-02-15 20:01:48 +00:00
{
I64 i = 0, k, b, x1, x2;
PowPrime *pp;
F64 disc;
if (n < 2)
return FALSE;
while (i++ < cbrt_primes)
{
k = 0;
while (!(n % p->prime))
{
n /= p->prime;
k++;
}
if (k)
{
pp = p->pp + (k - 1);
if (ModU64(&target_sf, pp->sumfact))
return FALSE;
if (n == 1)
{
if (target_sf == 1)
return TRUE;
else
return FALSE;
}
}
p++;
}
/* At this point we have three possible cases to test
1)n==p1 ->sf==(1+p1) ?
2)n==p1*p1 ->sf==(1+p1+p1^2) ?
3)n==p1*p2 ->sf==(p1+1)*(p2+1) ?
2020-02-15 20:01:48 +00:00
*/
if (1 + n == target_sf)
{
while (i++ < sqrt_primes)
{
k = 0;
while (!(n % p->prime))
{
n /= p->prime;
k++;
}
if (k)
{
pp = p->pp + (k - 1);
if (ModU64(&target_sf, pp->sumfact))
return FALSE;
if (n == 1)
{
if (target_sf == 1)
return TRUE;
else
return FALSE;
}
}
p++;
}
if (1 + n == target_sf)
return TRUE;
else
return FALSE;
2020-02-15 20:01:48 +00:00
}
k =Sqrt(n);
if (k * k == n)
{
if (1 + k + n == target_sf)
return TRUE;
else
return FALSE;
}
else
{
// n==p1*p2 -> sf==(p1+1)*(p2+1) ? where p1 != 1 && p2 != 1
// if p1==1 || p2==1, it is FALSE because we checked a single prime above.
// sf==(p1+1)*(n/p1+1)
// sf==n+p1+n/p1+1
// sf*p1==n*p1+p1^2+n+p1
// p1^2+(n+1-sf)*p1+n=0
// x=(-b+/-sqrt(b^2-4ac))/2a
// a=1
// x=(-b+/-sqrt(b^2-4c))/2
// b=n+1-sf;c=n
b = n + 1 - target_sf;
2020-02-15 20:01:48 +00:00
// x=(-b+/-sqrt(b^2-4n))/2
disc = b * b - 4 * n;
if (disc < 0)
return FALSE;
x1 = (-b - Sqrt(disc)) / 2;
if (x1 <= 1)
return FALSE;
x2 = n / x1;
if (x2 > 1 && x1 * x2 == n)
return TRUE;
else
return FALSE;
}
2020-02-15 20:01:48 +00:00
}
U0 PutFactors(I64 n) //For debugging
{
I64 i, k, sqrt = Ceil(Sqrt(n));
for (i = 2; i <= sqrt; i++)
{
k = 0;
while (!(n % i))
{
k++;
n /= i;
}
if (k)
{
"%d", i;
if (k > 1)
"^%d", k;
'' CH_SPACE;
}
}
if (n != 1)
"%d ", n;
2020-02-15 20:01:48 +00:00
}
class RangeJob
{
CDoc *doc;
I64 num, lo, hi, N, sqrt_primes, cbrt_primes;
Prime *primes;
CJob *cmd;
2020-02-16 00:20:04 +00:00
} rj[mp_count];
2020-02-15 20:01:48 +00:00
I64 TestCoreSubRange(RangeJob *r)
{
I64 i, j, m, n, n2, sf, res = 0, range = r->hi - r->lo,
*sumfacts = MAlloc(range * sizeof(I64)),
*residue = MAlloc(range * sizeof(I64));
U16 *pow_count = MAlloc(range * sizeof(U16));
Prime *p = r->primes;
PowPrime *pp;
MemSetI64(sumfacts, 1, range);
for (n = r->lo; n < r->hi; n++)
residue[n - r->lo] = n;
for (j = 0; j <r->sqrt_primes; j++)
{
MemSet(pow_count, 0, range * sizeof(U16));
m = 1;
for (i = 0; i < p->pow_count; i++)
{
m *= p->prime;
n = m - r->lo % m;
while (n < range)
{
pow_count[n]++;
n += m;
}
}
for (n = 0; n < range; n++)
if (i = pow_count[n])
{
pp = &p->pp[i - 1];
sumfacts[n] *= pp->sumfact;
residue [n] /= pp->n;
}
p++;
}
for (n = 0; n < range; n++)
if (residue[n] != 1)
sumfacts[n] *= 1 + residue[n];
for (n = r->lo; n < r->hi; n++)
{
sf = sumfacts[n - r->lo];
n2 = sf - n - 1;
if (n < n2 < r->N)
{
if (r->lo <= n2<r->hi && sumfacts[n2 - r->lo] - n2 - 1 == n ||
TestSumFact(n2, sf, r->sqrt_primes, r->cbrt_primes, r->primes))
{
DocPrint(r->doc, "%u:%u\n", n, sf - n - 1);
res++;
}
}
}
Free(pow_count);
Free(residue);
Free(sumfacts);
return res;
2020-02-15 20:01:48 +00:00
}
#define CORE_SUB_RANGE 0x1000
I64 TestCoreRange(RangeJob *r)
{
I64 i, n, res = 0;
RangeJob rj;
MemCopy(&rj, r, sizeof(RangeJob));
for (i = r->lo; i < r->hi; i += CORE_SUB_RANGE)
{
rj.lo = i;
rj.hi = i + CORE_SUB_RANGE;
if (rj.hi > r->hi)
rj.hi = r->hi;
res += TestCoreSubRange(&rj);
n = rj.hi - rj.lo;
lock {progress1 += n;}
Yield;
}
return res;
2020-02-15 20:01:48 +00:00
}
I64 MagicPairs(I64 N)
{
F64 t0 = tS;
I64 res = 0;
I64 sqrt_primes, cbrt_primes, num_powprimes,
i, k, n = (N - 1) / mp_count + 1;
Prime *primes = PrimesNew(N, &sqrt_primes, &cbrt_primes);
PowPrime *powprimes = PowPrimesNew(N, sqrt_primes, primes, &num_powprimes);
"N:%u SqrtPrimes:%u CbrtPrimes:%u PowersOfPrimes:%u\n", N, sqrt_primes, cbrt_primes, num_powprimes;
progress1 = 0;
*progress1_desc = 0;
progress1_max = N;
k = 2;
for (i = 0; i < mp_count; i++)
{
rj[i].doc = DocPut;
rj[i].num = i;
rj[i].lo = k;
k += n;
if (k > N)
k = N;
rj[i].hi = k;
rj[i].N = N;
rj[i].sqrt_primes = sqrt_primes;
rj[i].cbrt_primes = cbrt_primes;
rj[i].primes = primes;
rj[i].cmd = JobQueue(&TestCoreRange, &rj[i], mp_count - 1 - i, 0);
}
for (i = 0; i < mp_count; i++)
res += JobResGet(rj[i].cmd);
Free(powprimes);
Free(primes);
"Found:%u Time:%9.4f\n", res, tS - t0;
progress1 = progress1_max = 0;
return res;
2020-02-15 20:01:48 +00:00
}
MagicPairs(1000000);