ZealOS/src/Demo/MagicPairs.CC
TomAwezome db32fdb367 Reformatted entire codebase.
Reformatted DolDoc files, adjusted sprites in documentation to reflect naming changes, corrected keybinding labels in AutoComplete window, fixed formatting error in Tips.DD.

Added DVD Boot AHCI prototyping into Kernel, displays detected AHCI configuration and halts mid-boot.

Small modifications to standard font, slight increase to mouse X and Y speed.
2020-12-23 18:27:18 -05:00

421 lines
7.1 KiB
HolyC
Executable file

/*The magic pairs problem:
Let SumFact(n) be the sum of factors
of n.
Find all n1,n2 in a range such that
SumFact(n1)-n1-1 == n2 and
SumFact(n2)-n2-1 == n1
-----------------------------------------------------
To find SumFact(k), start with prime factorization:
k=(p1^n1)(p2^n2) ... (pN^nN)
THEN,
SumFact(k)=(1+p1+p1^2...p1^n1)*(1+p2+p2^2...p2^n2)*
(1+pN+pN^2...pN^nN)
PROOF:
Do a couple examples -- it's obvious:
48=2^4*3
SumFact(48)=(1+2+4+8+16)*(1+3)=1+2+4+8+16+3+6+12+24+48
75=3*5^2
SumFact(75)=(1+3)*(1+5+25) =1+5+25+3+15+75
Corollary:
SumFact(k)=SumFact(p1^n1)*SumFact(p2^n2)*...*SumFact(pN^nN)
*/
//Primes are needed to sqrt(N). Therefore, we can use U32.
class PowPrime
{
I64 n;
I64 sumfact; //Sumfacts for powers of primes are needed beyond sqrt(N)
};
class Prime
{
U32 prime, pow_count;
PowPrime *pp;
};
I64 *PrimesNew(I64 N, I64 *_sqrt_primes, I64 *_cbrt_primes)
{
I64 i, j, sqrt = Ceil(Sqrt(N)), cbrt = Ceil(N ` (1 / 3.0)),
sqrt_sqrt = Ceil(Sqrt(sqrt)), sqrt_primes = 0, cbrt_primes = 0;
U8 *s = CAlloc((sqrt + 1 + 7) / 8);
Prime *primes, *p;
for (i = 2; i <= sqrt_sqrt; i++)
{
if (!Bt(s, i))
{
j = i * 2;
while (j <= sqrt)
{
Bts(s, j);
j += i;
}
}
}
for (i = 2; i <= sqrt; i++)
if (!Bt(s, i))
{
sqrt_primes++; //Count primes
if (i <= cbrt)
cbrt_primes++;
}
p = primes = CAlloc(sqrt_primes * sizeof(Prime));
for (i = 2; i <= sqrt; i++)
if (!Bt(s, i))
{
p->prime = i;
p++;
}
Free(s);
*_sqrt_primes = sqrt_primes;
*_cbrt_primes = cbrt_primes;
return primes;
}
PowPrime *PowPrimesNew(I64 N, I64 sqrt_primes, Prime *primes, I64 *_num_powprimes)
{
I64 i, j, k, sf, num_powprimes = 0;
Prime *p;
PowPrime *powprimes, *pp;
p = primes;
for (i = 0; i < sqrt_primes; i++)
{
num_powprimes += Floor(Ln(N) / Ln(p->prime));
p++;
}
p = primes;
pp = powprimes = MAlloc(num_powprimes * sizeof(PowPrime));
for (i = 0; i < sqrt_primes; i++)
{
p->pp = pp;
j = p->prime;
k = 1;
sf = 1;
while (j < N)
{
sf += j;
pp->n = j;
pp->sumfact = sf;
j *= p->prime;
pp++;
p->pow_count++;
}
p++;
}
*_num_powprimes = num_powprimes;
return powprimes;
}
I64 SumFact(I64 n, I64 sqrt_primes, Prime *p)
{
I64 i, k, sf = 1;
PowPrime *pp;
if (n < 2)
return 1;
for (i = 0; i < sqrt_primes; i++)
{
k = 0;
while (!(n % p->prime))
{
n /= p->prime;
k++;
}
if (k)
{
pp = p->pp + (k - 1);
sf *= pp->sumfact;
if (n == 1)
return sf;
}
p++;
}
return sf * (1 + n); //Prime
}
Bool TestSumFact(I64 n, I64 target_sf, I64 sqrt_primes, I64 cbrt_primes, Prime *p)
{
I64 i = 0, k, b, x1, x2;
PowPrime *pp;
F64 disc;
if (n < 2)
return FALSE;
while (i++ < cbrt_primes)
{
k = 0;
while (!(n % p->prime))
{
n /= p->prime;
k++;
}
if (k)
{
pp = p->pp + (k - 1);
if (ModU64(&target_sf, pp->sumfact))
return FALSE;
if (n == 1)
{
if (target_sf == 1)
return TRUE;
else
return FALSE;
}
}
p++;
}
/* At this point we have three possible cases to test
1)n==p1 ->sf==(1+p1) ?
2)n==p1*p1 ->sf==(1+p1+p1^2) ?
3)n==p1*p2 ->sf==(p1+1)*(p2+1) ?
*/
if (1 + n == target_sf)
{
while (i++ < sqrt_primes)
{
k = 0;
while (!(n % p->prime))
{
n /= p->prime;
k++;
}
if (k)
{
pp = p->pp + (k - 1);
if (ModU64(&target_sf, pp->sumfact))
return FALSE;
if (n == 1)
{
if (target_sf == 1)
return TRUE;
else
return FALSE;
}
}
p++;
}
if (1 + n == target_sf)
return TRUE;
else
return FALSE;
}
k =Sqrt(n);
if (k * k == n)
{
if (1 + k + n == target_sf)
return TRUE;
else
return FALSE;
}
else
{
// n==p1*p2 -> sf==(p1+1)*(p2+1) ? where p1 != 1 && p2 != 1
// if p1==1 || p2==1, it is FALSE because we checked a single prime above.
// sf==(p1+1)*(n/p1+1)
// sf==n+p1+n/p1+1
// sf*p1==n*p1+p1^2+n+p1
// p1^2+(n+1-sf)*p1+n=0
// x=(-b+/-sqrt(b^2-4ac))/2a
// a=1
// x=(-b+/-sqrt(b^2-4c))/2
// b=n+1-sf;c=n
b = n + 1 - target_sf;
// x=(-b+/-sqrt(b^2-4n))/2
disc = b * b - 4 * n;
if (disc < 0)
return FALSE;
x1 = (-b - Sqrt(disc)) / 2;
if (x1 <= 1)
return FALSE;
x2 = n / x1;
if (x2 > 1 && x1 * x2 == n)
return TRUE;
else
return FALSE;
}
}
U0 PutFactors(I64 n) //For debugging
{
I64 i, k, sqrt = Ceil(Sqrt(n));
for (i = 2; i <= sqrt; i++)
{
k = 0;
while (!(n % i))
{
k++;
n /= i;
}
if (k)
{
"%d", i;
if (k > 1)
"^%d", k;
'' CH_SPACE;
}
}
if (n != 1)
"%d ", n;
}
class RangeJob
{
CDoc *doc;
I64 num, lo, hi, N, sqrt_primes, cbrt_primes;
Prime *primes;
CJob *cmd;
} rj[mp_count];
I64 TestCoreSubRange(RangeJob *r)
{
I64 i, j, m, n, n2, sf, res = 0, range = r->hi - r->lo,
*sumfacts = MAlloc(range * sizeof(I64)),
*residue = MAlloc(range * sizeof(I64));
U16 *pow_count = MAlloc(range * sizeof(U16));
Prime *p = r->primes;
PowPrime *pp;
MemSetI64(sumfacts, 1, range);
for (n = r->lo; n < r->hi; n++)
residue[n - r->lo] = n;
for (j = 0; j <r->sqrt_primes; j++)
{
MemSet(pow_count, 0, range * sizeof(U16));
m = 1;
for (i = 0; i < p->pow_count; i++)
{
m *= p->prime;
n = m - r->lo % m;
while (n < range)
{
pow_count[n]++;
n += m;
}
}
for (n = 0; n < range; n++)
if (i = pow_count[n])
{
pp = &p->pp[i - 1];
sumfacts[n] *= pp->sumfact;
residue [n] /= pp->n;
}
p++;
}
for (n = 0; n < range; n++)
if (residue[n] != 1)
sumfacts[n] *= 1 + residue[n];
for (n = r->lo; n < r->hi; n++)
{
sf = sumfacts[n - r->lo];
n2 = sf - n - 1;
if (n < n2 < r->N)
{
if (r->lo <= n2<r->hi && sumfacts[n2 - r->lo] - n2 - 1 == n ||
TestSumFact(n2, sf, r->sqrt_primes, r->cbrt_primes, r->primes))
{
DocPrint(r->doc, "%u:%u\n", n, sf - n - 1);
res++;
}
}
}
Free(pow_count);
Free(residue);
Free(sumfacts);
return res;
}
#define CORE_SUB_RANGE 0x1000
I64 TestCoreRange(RangeJob *r)
{
I64 i, n, res = 0;
RangeJob rj;
MemCopy(&rj, r, sizeof(RangeJob));
for (i = r->lo; i < r->hi; i += CORE_SUB_RANGE)
{
rj.lo = i;
rj.hi = i + CORE_SUB_RANGE;
if (rj.hi > r->hi)
rj.hi = r->hi;
res += TestCoreSubRange(&rj);
n = rj.hi - rj.lo;
lock {progress1 += n;}
Yield;
}
return res;
}
I64 MagicPairs(I64 N)
{
F64 t0 = tS;
I64 res = 0;
I64 sqrt_primes, cbrt_primes, num_powprimes,
i, k, n = (N - 1) / mp_count + 1;
Prime *primes = PrimesNew(N, &sqrt_primes, &cbrt_primes);
PowPrime *powprimes = PowPrimesNew(N, sqrt_primes, primes, &num_powprimes);
"N:%u SqrtPrimes:%u CbrtPrimes:%u PowersOfPrimes:%u\n", N, sqrt_primes, cbrt_primes, num_powprimes;
progress1 = 0;
*progress1_desc = 0;
progress1_max = N;
k = 2;
for (i = 0; i < mp_count; i++)
{
rj[i].doc = DocPut;
rj[i].num = i;
rj[i].lo = k;
k += n;
if (k > N)
k = N;
rj[i].hi = k;
rj[i].N = N;
rj[i].sqrt_primes = sqrt_primes;
rj[i].cbrt_primes = cbrt_primes;
rj[i].primes = primes;
rj[i].cmd = JobQueue(&TestCoreRange, &rj[i], mp_count - 1 - i, 0);
}
for (i = 0; i < mp_count; i++)
res += JobResGet(rj[i].cmd);
Free(powprimes);
Free(primes);
"Found:%u Time:%9.4f\n", res, tS - t0;
progress1 = progress1_max = 0;
return res;
}
MagicPairs(1000000);