ZealOS/src/Demo/MagicPairs.CC

376 lines
6.5 KiB
HolyC
Raw Normal View History

2020-02-15 20:01:48 +00:00
/*The magic pairs problem:
Let SumFact(n) be the sum of factors
of n.
Find all n1,n2 in a range such that
SumFact(n1)-n1-1==n2 and
2020-02-15 20:01:48 +00:00
SumFact(n2)-n2-1==n1
-----------------------------------------------------
To find SumFact(k), start with prime factorization:
k=(p1^n1)(p2^n2) ... (pN^nN)
THEN,
SumFact(k)=(1+p1+p1^2...p1^n1)*(1+p2+p2^2...p2^n2)*
(1+pN+pN^2...pN^nN)
PROOF:
Do a couple examples -- it's obvious:
48=2^4*3
SumFact(48)=(1+2+4+8+16)*(1+3)=1+2+4+8+16+3+6+12+24+48
75=3*5^2
SumFact(75)=(1+3)*(1+5+25) =1+5+25+3+15+75
2020-02-15 20:01:48 +00:00
Corollary:
SumFact(k)=SumFact(p1^n1)*SumFact(p2^n2)*...*SumFact(pN^nN)
*/
//Primes are needed to sqrt(N). Therefore, we can use U32.
class PowPrime
{
I64 n;
I64 sumfact; //Sumfacts for powers of primes are needed beyond sqrt(N)
2020-02-15 20:01:48 +00:00
};
class Prime
{
U32 prime,pow_count;
PowPrime *pp;
2020-02-15 20:01:48 +00:00
};
I64 *PrimesNew(I64 N,I64 *_sqrt_primes,I64 *_cbrt_primes)
{
I64 i,j,sqrt=Ceil(Sqrt(N)),cbrt=Ceil(N`(1/3.0)),sqrt_sqrt=Ceil(Sqrt(sqrt)),
sqrt_primes=0,cbrt_primes=0;
U8 *s=CAlloc((sqrt+1+7)/8);
Prime *primes,*p;
for (i=2;i<=sqrt_sqrt;i++) {
if (!Bt(s,i)) {
j=i*2;
while (j<=sqrt) {
Bts(s,j);
j+=i;
}
}
}
for (i=2;i<=sqrt;i++)
if (!Bt(s,i)) {
sqrt_primes++; //Count primes
if (i<=cbrt)
cbrt_primes++;
}
p=primes=CAlloc(sqrt_primes*sizeof(Prime));
for (i=2;i<=sqrt;i++)
if (!Bt(s,i)) {
p->prime=i;
p++;
}
Free(s);
*_sqrt_primes=sqrt_primes;
*_cbrt_primes=cbrt_primes;
return primes;
2020-02-15 20:01:48 +00:00
}
PowPrime *PowPrimesNew(I64 N,I64 sqrt_primes,Prime *primes,I64 *_num_powprimes)
{
I64 i,j,k,sf,num_powprimes=0;
Prime *p;
PowPrime *powprimes,*pp;
p=primes;
for (i=0;i<sqrt_primes;i++) {
num_powprimes+=Floor(Ln(N)/Ln(p->prime));
p++;
}
p=primes;
pp=powprimes=MAlloc(num_powprimes*sizeof(PowPrime));
for (i=0;i<sqrt_primes;i++) {
p->pp=pp;
j=p->prime;
k=1;
sf=1;
while (j<N) {
sf+=j;
pp->n=j;
pp->sumfact=sf;
j*=p->prime;
pp++;
p->pow_count++;
}
p++;
}
*_num_powprimes=num_powprimes;
return powprimes;
2020-02-15 20:01:48 +00:00
}
I64 SumFact(I64 n,I64 sqrt_primes,Prime *p)
{
I64 i,k,sf=1;
PowPrime *pp;
if (n<2)
return 1;
for (i=0;i<sqrt_primes;i++) {
k=0;
while (!(n%p->prime)) {
n/=p->prime;
k++;
}
if (k) {
pp=p->pp+(k-1);
sf*=pp->sumfact;
if (n==1)
return sf;
}
p++;
}
return sf*(1+n); //Prime
2020-02-15 20:01:48 +00:00
}
Bool TestSumFact(I64 n,I64 target_sf,I64 sqrt_primes,I64 cbrt_primes,Prime *p)
{
I64 i=0,k,b,x1,x2;
PowPrime *pp;
F64 disc;
if (n<2)
return FALSE;
while (i++<cbrt_primes) {
k=0;
while (!(n%p->prime)) {
n/=p->prime;
k++;
}
if (k) {
pp=p->pp+(k-1);
if (ModU64(&target_sf,pp->sumfact))
return FALSE;
if (n==1) {
if (target_sf==1)
return TRUE;
else
return FALSE;
}
}
p++;
}
/* At this point we have three possible cases to test
1)n==p1 ->sf==(1+p1) ?
2)n==p1*p1 ->sf==(1+p1+p1^2) ?
3)n==p1*p2 ->sf==(p1+1)*(p2+1) ?
2020-02-15 20:01:48 +00:00
*/
if (1+n==target_sf) {
while (i++<sqrt_primes) {
k=0;
while (!(n%p->prime)) {
n/=p->prime;
k++;
}
if (k) {
pp=p->pp+(k-1);
if (ModU64(&target_sf,pp->sumfact))
return FALSE;
if (n==1) {
if (target_sf==1)
return TRUE;
else
return FALSE;
}
}
p++;
}
if (1+n==target_sf)
return TRUE;
else
return FALSE;
2020-02-15 20:01:48 +00:00
}
k=Sqrt(n);
if (k*k==n) {
if (1+k+n==target_sf)
return TRUE;
else
return FALSE;
} else {
// n==p1*p2 -> sf==(p1+1)*(p2+1) ? where p1!=1 && p2!=1
// if p1==1 || p2==1, it is FALSE because we checked a single prime above.
// sf==(p1+1)*(n/p1+1)
// sf==n+p1+n/p1+1
// sf*p1==n*p1+p1^2+n+p1
// p1^2+(n+1-sf)*p1+n=0
// x=(-b+/-sqrt(b^2-4ac))/2a
// a=1
// x=(-b+/-sqrt(b^2-4c))/2
// b=n+1-sf;c=n
b=n+1-target_sf;
2020-02-15 20:01:48 +00:00
// x=(-b+/-sqrt(b^2-4n))/2
disc=b*b-4*n;
if (disc<0)
return FALSE;
x1=(-b-Sqrt(disc))/2;
if (x1<=1)
return FALSE;
x2=n/x1;
if (x2>1 && x1*x2==n)
return TRUE;
else
return FALSE;
}
2020-02-15 20:01:48 +00:00
}
U0 PutFactors(I64 n) //For debugging
{
I64 i,k,sqrt=Ceil(Sqrt(n));
for (i=2;i<=sqrt;i++) {
k=0;
while (!(n%i)) {
k++;
n/=i;
}
if (k) {
"%d",i;
if (k>1)
"^%d",k;
'' CH_SPACE;
}
}
if (n!=1)
"%d ",n;
2020-02-15 20:01:48 +00:00
}
class RangeJob
{
CDoc *doc;
I64 num,lo,hi,N,sqrt_primes,cbrt_primes;
Prime *primes;
CJob *cmd;
2020-02-16 00:20:04 +00:00
} rj[mp_count];
2020-02-15 20:01:48 +00:00
I64 TestCoreSubRange(RangeJob *r)
{
I64 i,j,m,n,n2,sf,res=0,range=r->hi-r->lo,
*sumfacts=MAlloc(range*sizeof(I64)),
*residue =MAlloc(range*sizeof(I64));
U16 *pow_count =MAlloc(range*sizeof(U16));
Prime *p=r->primes;
PowPrime *pp;
MemSetI64(sumfacts,1,range);
for (n=r->lo;n<r->hi;n++)
residue[n-r->lo]=n;
for (j=0;j<r->sqrt_primes;j++) {
MemSet(pow_count,0,range*sizeof(U16));
m=1;
for (i=0;i<p->pow_count;i++) {
m*=p->prime;
n=m-r->lo%m;
while (n<range) {
pow_count[n]++;
n+=m;
}
}
for (n=0;n<range;n++)
if (i=pow_count[n]) {
pp=&p->pp[i-1];
sumfacts[n]*=pp->sumfact;
residue [n]/=pp->n;
}
p++;
}
for (n=0;n<range;n++)
if (residue[n]!=1)
sumfacts[n]*=1+residue[n];
for (n=r->lo;n<r->hi;n++) {
sf=sumfacts[n-r->lo];
n2=sf-n-1;
if (n<n2<r->N) {
if (r->lo<=n2<r->hi && sumfacts[n2-r->lo]-n2-1==n ||
TestSumFact(n2,sf,r->sqrt_primes,r->cbrt_primes,r->primes)) {
DocPrint(r->doc,"%u:%u\n",n,sf-n-1);
res++;
}
}
}
Free(pow_count);
Free(residue);
Free(sumfacts);
return res;
2020-02-15 20:01:48 +00:00
}
#define CORE_SUB_RANGE 0x1000
I64 TestCoreRange(RangeJob *r)
{
I64 i,n,res=0;
RangeJob rj;
MemCopy(&rj,r,sizeof(RangeJob));
for (i=r->lo;i<r->hi;i+=CORE_SUB_RANGE) {
rj.lo=i;
rj.hi=i+CORE_SUB_RANGE;
if (rj.hi>r->hi)
rj.hi=r->hi;
res+=TestCoreSubRange(&rj);
n=rj.hi-rj.lo;
lock {progress1+=n;}
Yield;
}
return res;
2020-02-15 20:01:48 +00:00
}
I64 MagicPairs(I64 N)
{
F64 t0=tS;
I64 res=0;
I64 sqrt_primes,cbrt_primes,num_powprimes,
i,k,n=(N-1)/mp_count+1;
Prime *primes=PrimesNew(N,&sqrt_primes,&cbrt_primes);
PowPrime *powprimes=PowPrimesNew(N,sqrt_primes,primes,&num_powprimes);
"N:%u SqrtPrimes:%u CbrtPrimes:%u PowersOfPrimes:%u\n",
N,sqrt_primes,cbrt_primes,num_powprimes;
progress1=0;
*progress1_desc=0;
progress1_max=N;
k=2;
for (i=0;i<mp_count;i++) {
rj[i].doc=DocPut;
rj[i].num=i;
rj[i].lo=k;
k+=n;
if (k>N) k=N;
rj[i].hi=k;
rj[i].N=N;
rj[i].sqrt_primes=sqrt_primes;
rj[i].cbrt_primes=cbrt_primes;
rj[i].primes=primes;
rj[i].cmd=JobQueue(&TestCoreRange,&rj[i],mp_count-1-i,0);
}
for (i=0;i<mp_count;i++)
res+=JobResGet(rj[i].cmd);
Free(powprimes);
Free(primes);
"Found:%u Time:%9.4f\n",res,tS-t0;
progress1=progress1_max=0;
return res;
2020-02-15 20:01:48 +00:00
}
MagicPairs(1000000);