mirror of
https://codeberg.org/ziglings/exercises.git
synced 2024-12-27 09:56:31 +00:00
Compare commits
No commits in common. "731a3eb0a6f7a88cf03dcf933e9c5caebdef5bad" and "150b3de2995dc0f6da3b03113151488fadab246b" have entirely different histories.
731a3eb0a6
...
150b3de299
3 changed files with 0 additions and 167 deletions
|
@ -1201,13 +1201,6 @@ const exercises = [_]Exercise{
|
|||
.main_file = "108_labeled_switch.zig",
|
||||
.output = "The pull request has been merged.",
|
||||
},
|
||||
.{
|
||||
.main_file = "109_vectors.zig",
|
||||
.output =
|
||||
\\Max difference (old fn): 0.014
|
||||
\\Max difference (new fn): 0.014
|
||||
,
|
||||
},
|
||||
.{
|
||||
.main_file = "999_the_end.zig",
|
||||
.output =
|
||||
|
|
|
@ -1,147 +0,0 @@
|
|||
// So far in Ziglings, we've seen how for loops can be used to
|
||||
// repeat calculations across an array in several ways.
|
||||
//
|
||||
// For loops are generally great for this kind of task, but
|
||||
// sometimes they don't fully utilize the capabilities of the
|
||||
// CPU.
|
||||
//
|
||||
// Most modern CPUs can execute instructions in which SEVERAL
|
||||
// calculations are performed WITHIN registers at the SAME TIME.
|
||||
// These are known as "single instruction, multiple data" (SIMD)
|
||||
// instructions. SIMD instructions can make code significantly
|
||||
// more performant.
|
||||
//
|
||||
// To see why, imagine we have a program in which we take the
|
||||
// square root of four (changing) f32 floats.
|
||||
//
|
||||
// A simple compiler would take the program and produce machine code
|
||||
// which calculates each square root sequentially. Most registers on
|
||||
// modern CPUs have 64 bits, so we could imagine that each float moves
|
||||
// into a 64-bit register, and the following happens four times:
|
||||
//
|
||||
// 32 bits 32 bits
|
||||
// +-------------------+
|
||||
// register | 0 | x |
|
||||
// +-------------------+
|
||||
//
|
||||
// |
|
||||
// [SQRT instruction]
|
||||
// V
|
||||
//
|
||||
// +-------------------+
|
||||
// | 0 | sqrt(x) |
|
||||
// +-------------------+
|
||||
//
|
||||
// Notice that half of the register contains blank data to which
|
||||
// nothing happened. What a waste! What if we were able to use
|
||||
// that space instead? This is the idea at the core of SIMD.
|
||||
//
|
||||
// Most modern CPUs contain specialized registers with at least 128 bits
|
||||
// for performing SIMD instructions. On a machine with 128-bit SIMD
|
||||
// registers, a smart compiler would probably NOT issue four sqrt
|
||||
// instructions as above, but instead pack the floats into a single
|
||||
// 128-bit register, then execute a single "packed" sqrt
|
||||
// instruction to do ALL the square root calculations at once.
|
||||
//
|
||||
// For example:
|
||||
//
|
||||
//
|
||||
// 32 bits 32 bits 32 bits 32 bits
|
||||
// +---------------------------------------+
|
||||
// register | 4.0 | 9.0 | 25.0 | 49.0 |
|
||||
// +---------------------------------------+
|
||||
//
|
||||
// |
|
||||
// [SIMD SQRT instruction]
|
||||
// V
|
||||
//
|
||||
// +---------------------------------------+
|
||||
// register | 2.0 | 3.0 | 5.0 | 7.0 |
|
||||
// +---------------------------------------+
|
||||
//
|
||||
// Pretty cool, right?
|
||||
//
|
||||
// Code with SIMD instructions is usually more performant than code
|
||||
// without SIMD instructions. Zig cares a lot about performance,
|
||||
// so it has built-in support for SIMD! It has a data structure that
|
||||
// directly supports SIMD instructions:
|
||||
//
|
||||
// +-----------+
|
||||
// | Vectors |
|
||||
// +-----------+
|
||||
//
|
||||
// Operations performed on vectors in Zig will be done in parallel using
|
||||
// SIMD instructions, whenever possible.
|
||||
//
|
||||
// Defining vectors in Zig is straightforwards. No library import is needed.
|
||||
const v1 = @Vector(3, i32){ 1, 10, 100 };
|
||||
const v2 = @Vector(3, f32){ 2.0, 3.0, 5.0 };
|
||||
|
||||
// Vectors support the same builtin operators as their underlying base types.
|
||||
const v3 = v1 + v1; // { 2, 20, 200};
|
||||
const v4 = v2 * v2; // { 4.0, 9.0, 25.0};
|
||||
|
||||
// Intrinsics that apply to base types usually extend to vectors.
|
||||
const v5: @Vector(3, f32) = @floatFromInt(v3); // { 2.0, 20.0, 200.0}
|
||||
const v6 = v4 - v5; // { 2.0, -11.0, -175.0}
|
||||
const v7 = @abs(v6); // { 2.0, 11.0, 175.0}
|
||||
|
||||
// We can make constant vectors, and reduce vectors.
|
||||
const v8: @Vector(4, u8) = @splat(2); // { 2, 2, 2, 2}
|
||||
const v8_sum = @reduce(.Add, v8); // 8
|
||||
const v8_min = @reduce(.Min, v8); // 2
|
||||
|
||||
// Fixed-length arrays can be automatically assigned to vectors (and vice-versa).
|
||||
const single_digit_primes = [4]i8{ 2, 3, 5, 7 };
|
||||
const prime_vector: @Vector(4, i8) = single_digit_primes;
|
||||
|
||||
// Now let's use vectors to simplify and optimize some code!
|
||||
//
|
||||
// Ewa is writing a program in which they frequently want to compare
|
||||
// two lists of four f32s. Ewa expects the lists to be similar, and
|
||||
// wants to determine the largest pairwise difference between the lists.
|
||||
//
|
||||
// Ewa wrote the following function to figure this out.
|
||||
|
||||
fn calcMaxPairwiseDiffOld(list1: [4]f32, list2: [4]f32) f32 {
|
||||
var max_diff: f32 = 0;
|
||||
for (list1, list2) |n1, n2| {
|
||||
const abs_diff = @abs(n1 - n2);
|
||||
if (abs_diff > max_diff) {
|
||||
max_diff = abs_diff;
|
||||
}
|
||||
}
|
||||
return max_diff;
|
||||
}
|
||||
|
||||
// Ewa heard about vectors in Zig, and started writing a new vector
|
||||
// version of the function, but has got stuck!
|
||||
//
|
||||
// Help Ewa finish the vector version! The examples above should help.
|
||||
|
||||
const Vec4 = @Vector(4, f32);
|
||||
fn calcMaxPairwiseDiffNew(a: Vec4, b: Vec4) f32 {
|
||||
const abs_diff_vec = ???;
|
||||
const max_diff = @reduce(???, abs_diff_vec);
|
||||
return max_diff;
|
||||
}
|
||||
|
||||
// Quite the simplification! We could even write the function in one line
|
||||
// and it would still be readable.
|
||||
//
|
||||
// Since the entire function is now expressed in terms of vector operations,
|
||||
// the Zig compiler will easily be able to compile it down to machine code
|
||||
// which utilizes the all-powerful SIMD instructions and does a lot of the
|
||||
// computation in parallel.
|
||||
|
||||
const std = @import("std");
|
||||
const print = std.debug.print;
|
||||
|
||||
pub fn main() void {
|
||||
const l1 = [4]f32{ 3.141, 2.718, 0.577, 1.000 };
|
||||
const l2 = [4]f32{ 3.154, 2.707, 0.591, 0.993 };
|
||||
const mpd_old = calcMaxPairwiseDiffOld(l1, l2);
|
||||
const mpd_new = calcMaxPairwiseDiffNew(l1, l2);
|
||||
print("Max difference (old fn): {d: >5.3}\n", .{mpd_old});
|
||||
print("Max difference (new fn): {d: >5.3}\n", .{mpd_new});
|
||||
}
|
|
@ -1,13 +0,0 @@
|
|||
--- exercises/109_vectors.zig 2024-11-07 14:57:09.673383618 +0100
|
||||
+++ answers/109_vectors.zig 2024-11-07 14:22:59.069150138 +0100
|
||||
@@ -121,8 +121,8 @@
|
||||
|
||||
const Vec4 = @Vector(4, f32);
|
||||
fn calcMaxPairwiseDiffNew(a: Vec4, b: Vec4) f32 {
|
||||
- const abs_diff_vec = ???;
|
||||
- const max_diff = @reduce(???, abs_diff_vec);
|
||||
+ const abs_diff_vec = @abs(a - b);
|
||||
+ const max_diff = @reduce(.Max, abs_diff_vec);
|
||||
return max_diff;
|
||||
}
|
||||
|
Loading…
Reference in a new issue