ZealOS/zealbooter/zealbooter.c

284 lines
8.2 KiB
C

#include <stdint.h>
#include <stddef.h>
#include <limine.h>
#include <lib.h>
static volatile struct limine_module_request module_request = {
.id = LIMINE_MODULE_REQUEST,
.revision = 0
};
static volatile struct limine_hhdm_request hhdm_request = {
.id = LIMINE_HHDM_REQUEST,
.revision = 0
};
static volatile struct limine_memmap_request memmap_request = {
.id = LIMINE_MEMMAP_REQUEST,
.revision = 0
};
static volatile struct limine_framebuffer_request framebuffer_request = {
.id = LIMINE_FRAMEBUFFER_REQUEST,
.revision = 0
};
static volatile struct limine_smbios_request smbios_request = {
.id = LIMINE_SMBIOS_REQUEST,
.revision = 0
};
struct CZXE {
uint16_t jmp;
uint8_t module_align_bits;
uint8_t reserved;
uint32_t signature;
int64_t org;
int64_t patch_table_offset;
int64_t file_size;
} __attribute__((packed));
struct CDate {
uint32_t time;
int32_t date;
} __attribute__((packed));
#define MEM_E820_ENTRIES_NUM 48
#define MEM_E820T_USABLE 1
#define MEM_E820T_RESERVED 2
#define MEM_E820T_ACPI 3
#define MEM_E820T_ACPI_NVS 4
#define MEM_E820T_BAD_MEM 5
#define MEM_E820T_PERM_MEM 7
struct CMemE820 {
uint8_t *base;
int64_t len;
uint8_t type, pad[3];
} __attribute__((packed));
struct CGDTEntry {
uint64_t lo, hi;
} __attribute__((packed));
#define MP_PROCESSORS_NUM 128
struct CGDT {
struct CGDTEntry null;
struct CGDTEntry boot_ds;
struct CGDTEntry boot_cs;
struct CGDTEntry cs32;
struct CGDTEntry cs64;
struct CGDTEntry cs64_ring3;
struct CGDTEntry ds;
struct CGDTEntry ds_ring3;
struct CGDTEntry tr[MP_PROCESSORS_NUM];
struct CGDTEntry tr_ring3[MP_PROCESSORS_NUM];
} __attribute__((packed));
struct CSysLimitBase {
uint16_t limit;
uint8_t *base;
};
struct CKernel {
struct CZXE h;
uint32_t jmp;
uint32_t boot_src;
uint32_t boot_blk;
uint32_t boot_patch_table_base;
uint32_t sys_run_level;
struct CDate compile_time;
// U0 start
uint32_t boot_base;
uint16_t mem_E801[2];
struct CMemE820 mem_E820[MEM_E820_ENTRIES_NUM];
uint64_t mem_physical_space;
struct {
uint16_t limit;
uint8_t *base;
} __attribute__((packed)) sys_gdt_ptr;
uint16_t sys_pci_buses;
struct CGDT sys_gdt __attribute__((aligned(16)));
uint64_t sys_framebuffer_addr;
uint64_t sys_framebuffer_width;
uint64_t sys_framebuffer_height;
uint64_t sys_framebuffer_pitch;
uint8_t sys_framebuffer_bpp;
uint64_t sys_smbios_entry;
uint32_t sys_disk_uuid_a;
uint16_t sys_disk_uuid_b;
uint16_t sys_disk_uuid_c;
uint8_t sys_disk_uuid_d[8];
uint32_t sys_boot_stack;
} __attribute__((packed));
#define BOOT_SRC_RAM 2
#define BOOT_SRC_HDD 3
#define BOOT_SRC_DVD 4
#define RLF_16BIT 0b001
#define RLF_VESA 0b010
#define RLF_32BIT 0b100
extern symbol trampoline, trampoline_end;
struct E801 {
size_t lowermem;
size_t uppermem;
};
static struct E801 get_E801(void) {
struct E801 E801 = {0};
for (size_t i = 0; i < memmap_request.response->entry_count; i++) {
struct limine_memmap_entry *entry = memmap_request.response->entries[i];
if (entry->type == LIMINE_MEMMAP_USABLE) {
if (entry->base == 0x100000) {
if (entry->length > 0xf00000) {
E801.lowermem = 0x3c00;
} else {
E801.lowermem = entry->length / 1024;
}
}
if (entry->base <= 0x1000000 && entry->base + entry->length > 0x1000000) {
E801.uppermem = ((entry->length - (0x1000000 - entry->base)) / 1024) / 64;
}
}
}
return E801;
}
void _start(void) {
struct limine_file *kernel = module_request.response->modules[0];
struct CKernel *CKernel = kernel->address;
size_t trampoline_size = (uintptr_t)trampoline_end - (uintptr_t)trampoline;
size_t boot_stack_size = 32768;
uintptr_t final_address = (uintptr_t)-1;
for (size_t i = 0; i < memmap_request.response->entry_count; i++) {
struct limine_memmap_entry *entry = memmap_request.response->entries[i];
if (entry->type != LIMINE_MEMMAP_USABLE) {
continue;
}
if (entry->length >= ALIGN_UP(kernel->size + trampoline_size, 16) + boot_stack_size) {
final_address = entry->base;
break;
}
}
if (final_address == (uintptr_t)-1) {
// TODO: Panic. Show something?
for (;;);
}
struct limine_framebuffer *fb = framebuffer_request.response->framebuffers[0];
CKernel->sys_framebuffer_pitch = fb->pitch;
CKernel->sys_framebuffer_width = fb->width;
CKernel->sys_framebuffer_height = fb->height;
CKernel->sys_framebuffer_bpp = fb->bpp;
CKernel->sys_framebuffer_addr = (uintptr_t)fb->address - hhdm_request.response->offset;
void *CORE0_32BIT_INIT;
for (uint64_t *p = (uint64_t *)CKernel; ; p++) {
if (*p != 0xaa23c08ed10bd4d7) {
continue;
}
p++;
if (*p != 0xf6ceba7d4b74179a) {
continue;
}
p++;
CORE0_32BIT_INIT = p;
break;
}
CORE0_32BIT_INIT -= (uintptr_t)kernel->address;
CORE0_32BIT_INIT += final_address;
if (kernel->media_type == LIMINE_MEDIA_TYPE_OPTICAL)
CKernel->boot_src = BOOT_SRC_DVD;
else if (kernel->media_type == LIMINE_MEDIA_TYPE_GENERIC)
CKernel->boot_src = BOOT_SRC_HDD;
else
CKernel->boot_src = BOOT_SRC_RAM;
CKernel->boot_blk = 0;
CKernel->boot_patch_table_base = (uintptr_t)CKernel + CKernel->h.patch_table_offset;
CKernel->boot_patch_table_base -= (uintptr_t)kernel->address;
CKernel->boot_patch_table_base += final_address;
CKernel->sys_run_level = RLF_VESA | RLF_16BIT | RLF_32BIT;
CKernel->boot_base = (uintptr_t)&CKernel->jmp - (uintptr_t)kernel->address;
CKernel->boot_base += final_address;
CKernel->sys_gdt_ptr.limit = sizeof(CKernel->sys_gdt) - 1;
CKernel->sys_gdt_ptr.base = (void *)&CKernel->sys_gdt - (uintptr_t)kernel->address;
CKernel->sys_gdt_ptr.base += final_address;
CKernel->sys_pci_buses = 256;
struct E801 E801 = get_E801();
CKernel->mem_E801[0] = E801.lowermem;
CKernel->mem_E801[1] = E801.uppermem;
for (size_t i = 0; i < memmap_request.response->entry_count; i++) {
struct limine_memmap_entry *entry = memmap_request.response->entries[i];
int our_type;
switch (entry->type) {
case LIMINE_MEMMAP_BOOTLOADER_RECLAIMABLE:
case LIMINE_MEMMAP_KERNEL_AND_MODULES:
case LIMINE_MEMMAP_USABLE:
our_type = MEM_E820T_USABLE; break;
case LIMINE_MEMMAP_ACPI_RECLAIMABLE:
our_type = MEM_E820T_ACPI; break;
case LIMINE_MEMMAP_ACPI_NVS:
our_type = MEM_E820T_ACPI_NVS; break;
case LIMINE_MEMMAP_BAD_MEMORY:
our_type = MEM_E820T_BAD_MEM; break;
case LIMINE_MEMMAP_RESERVED:
default:
our_type = MEM_E820T_RESERVED; break;
}
CKernel->mem_E820[i].base = (void *)entry->base;
CKernel->mem_E820[i].len = entry->length;
CKernel->mem_E820[i].type = our_type;
}
void *sys_gdt_ptr = (void *)&CKernel->sys_gdt_ptr - (uintptr_t)kernel->address;
sys_gdt_ptr += final_address;
void *sys_smbios_entry = smbios_request.response->entry_32;
CKernel->sys_smbios_entry = (uintptr_t)sys_smbios_entry - hhdm_request.response->offset;
CKernel->sys_disk_uuid_a = kernel->gpt_disk_uuid.a;
CKernel->sys_disk_uuid_b = kernel->gpt_disk_uuid.b;
CKernel->sys_disk_uuid_c = kernel->gpt_disk_uuid.c;
memcpy(CKernel->sys_disk_uuid_d, kernel->gpt_disk_uuid.d, 8);
void *trampoline_phys = (void *)final_address + kernel->size;
uintptr_t boot_stack = ALIGN_UP(final_address + kernel->size + trampoline_size, 16) + boot_stack_size;
CKernel->sys_boot_stack = boot_stack;
memcpy(trampoline_phys, trampoline, trampoline_size);
memcpy((void *)final_address, CKernel, kernel->size);
asm volatile (
"jmp *%0"
:
: "a"(trampoline_phys), "b"(CORE0_32BIT_INIT),
"c"(sys_gdt_ptr), "d"(boot_stack),
"S"(CKernel->boot_patch_table_base), "D"(CKernel->boot_base)
: "memory");
__builtin_unreachable();
}