mirror of
https://github.com/Zeal-Operating-System/ZealOS.git
synced 2025-01-05 20:26:32 +00:00
dbf8647d59
Added top & right borders to RawDr. Improved spacing in some debug and compiler reporting. Fixed RawPutChar and EdLite tab width. Fixed Ui missing '0x' prefix syntax highlighter bug. Added 32BitPaint demo.
978 lines
114 KiB
HTML
Executable file
978 lines
114 KiB
HTML
Executable file
<!DOCTYPE HTML>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html;charset=US-ASCII">
|
|
<meta name="generator" content="ZealOS V0.08">
|
|
<style type="text/css">
|
|
body {background-color:#000000;}
|
|
.cF0{color:#ffffff;background-color:#000000;}
|
|
.cF1{color:#3465a4;background-color:#000000;}
|
|
.cF2{color:#4e9a06;background-color:#000000;}
|
|
.cF3{color:#06989a;background-color:#000000;}
|
|
.cF4{color:#a24444;background-color:#000000;}
|
|
.cF5{color:#75507b;background-color:#000000;}
|
|
.cF6{color:#ce982f;background-color:#000000;}
|
|
.cF7{color:#bcc0b9;background-color:#000000;}
|
|
.cF8{color:#555753;background-color:#000000;}
|
|
.cF9{color:#729fcf;background-color:#000000;}
|
|
.cFA{color:#82bc49;background-color:#000000;}
|
|
.cFB{color:#34e2e2;background-color:#000000;}
|
|
.cFC{color:#ac3535;background-color:#000000;}
|
|
.cFD{color:#ad7fa8;background-color:#000000;}
|
|
.cFE{color:#fce94f;background-color:#000000;}
|
|
.cFF{color:#000000;background-color:#000000;}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<pre style="font-family:monospace;font-size:12pt">
|
|
<a name="l1"></a><span class=cF0>#</span><span class=cF1>help_index</span><span class=cF0> </span><span class=cF6>"Graphics/Math"</span><span class=cF0>
|
|
<a name="l2"></a>
|
|
<a name="l3"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> </span><span class=cFB>gr_x_offsets</span><span class=cF0>[</span><span class=cFE>8</span><span class=cF0>] = {-</span><span class=cFE>1</span><span class=cF0>, </span><span class=cFE>0</span><span class=cF0>, </span><span class=cFE>1</span><span class=cF0>, -</span><span class=cFE>1</span><span class=cF0>, </span><span class=cFE>1</span><span class=cF0>, -</span><span class=cFE>1</span><span class=cF0>, </span><span class=cFE>0</span><span class=cF0>, </span><span class=cFE>1</span><span class=cF0>},
|
|
<a name="l4"></a> </span><span class=cFB>gr_y_offsets</span><span class=cF0>[</span><span class=cFE>8</span><span class=cF0>] = {-</span><span class=cFE>1</span><span class=cF0>, -</span><span class=cFE>1</span><span class=cF0>, -</span><span class=cFE>1</span><span class=cF0>, </span><span class=cFE>0</span><span class=cF0>, </span><span class=cFE>0</span><span class=cF0>, </span><span class=cFE>1</span><span class=cF0>, </span><span class=cFE>1</span><span class=cF0>, </span><span class=cFE>1</span><span class=cF0>},
|
|
<a name="l5"></a> </span><span class=cFB>gr_x_offsets2</span><span class=cF0>[</span><span class=cFE>4</span><span class=cF0>] = { </span><span class=cFE>0</span><span class=cF0>, -</span><span class=cFE>1</span><span class=cF0>, </span><span class=cFE>1</span><span class=cF0>, </span><span class=cFE>0</span><span class=cF0>},
|
|
<a name="l6"></a> </span><span class=cFB>gr_y_offsets2</span><span class=cF0>[</span><span class=cFE>4</span><span class=cF0>] = {-</span><span class=cFE>1</span><span class=cF0>, </span><span class=cFE>0</span><span class=cF0>, </span><span class=cFE>0</span><span class=cF0>, </span><span class=cFE>1</span><span class=cF0>};
|
|
<a name="l7"></a>
|
|
<a name="l8"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>Line</span><span class=cF0>(</span><span class=cF1>U8</span><span class=cF0> *aux_data, </span><span class=cF9>I64</span><span class=cF0> x1, </span><span class=cF9>I64</span><span class=cF0> y1, </span><span class=cF9>I64</span><span class=cF0> z1, </span><span class=cF9>I64</span><span class=cF0> x2, </span><span class=cF9>I64</span><span class=cF0> y2, </span><span class=cF9>I64</span><span class=cF0> z2,
|
|
<a name="l9"></a> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF1>U8</span><span class=cF0> *aux, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z</span><span class=cF7>)</span><span class=cF0>,
|
|
<a name="l10"></a> </span><span class=cF9>I64</span><span class=cF0> step=</span><span class=cFE>1</span><span class=cF0>, </span><span class=cF9>I64</span><span class=cF0> </span><span class=cF1>start</span><span class=cF0>=</span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l11"></a>{</span><span class=cF2>//Step through line segment calling callback.</span><span class=cF0>
|
|
<a name="l12"></a></span><span class=cF2>//Uses </span><a href="https://tomawezome.github.io/ZealOS/Demo/Lectures/FixedPoint.CC.html#l1"><span class=cF4>fixed-point</span></a><span class=cF2>.</span><span class=cF0>
|
|
<a name="l13"></a> </span><span class=cF9>I64</span><span class=cF0> i, j, d, dx = x2 - x1, dy = y2 - y1, dz = z2 - z1, _x, _y, _z, adx = </span><span class=cF5>AbsI64</span><span class=cF0>(dx), ady = </span><span class=cF5>AbsI64</span><span class=cF0>(dy), adz = </span><span class=cF5>AbsI64</span><span class=cF0>(dz);
|
|
<a name="l14"></a> </span><span class=cF1>Bool</span><span class=cF0> first = </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l15"></a>
|
|
<a name="l16"></a> </span><span class=cF1>if</span><span class=cF0> (adx >= ady)
|
|
<a name="l17"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l18"></a> </span><span class=cF1>if</span><span class=cF0> (adx >= adz)
|
|
<a name="l19"></a> {
|
|
<a name="l20"></a> </span><span class=cF1>if</span><span class=cF0> (d = adx)
|
|
<a name="l21"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l22"></a> </span><span class=cF1>if</span><span class=cF0> (dx >= </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l23"></a> dx = </span><span class=cFE>0x100000000</span><span class=cF0>;
|
|
<a name="l24"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l25"></a> dx = -</span><span class=cFE>0x100000000</span><span class=cF0>;
|
|
<a name="l26"></a> dy = dy << </span><span class=cFE>32</span><span class=cF0> / d;
|
|
<a name="l27"></a> dz = dz << </span><span class=cFE>32</span><span class=cF0> / d;
|
|
<a name="l28"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l29"></a> }
|
|
<a name="l30"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l31"></a> {
|
|
<a name="l32"></a> </span><span class=cF1>if</span><span class=cF0> (d = adz)
|
|
<a name="l33"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l34"></a> dx = dx << </span><span class=cFE>32</span><span class=cF0> / d;
|
|
<a name="l35"></a> dy = dy << </span><span class=cFE>32</span><span class=cF0> / d;
|
|
<a name="l36"></a> </span><span class=cF1>if</span><span class=cF0> (dz >= </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l37"></a> dz = </span><span class=cFE>0x100000000</span><span class=cF0>;
|
|
<a name="l38"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l39"></a> dz = -</span><span class=cFE>0x100000000</span><span class=cF0>;
|
|
<a name="l40"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l41"></a> }
|
|
<a name="l42"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l43"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l44"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l45"></a> </span><span class=cF1>if</span><span class=cF0> (ady >= adz)
|
|
<a name="l46"></a> {
|
|
<a name="l47"></a> </span><span class=cF1>if</span><span class=cF0> (d = ady)
|
|
<a name="l48"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l49"></a> dx = dx << </span><span class=cFE>32</span><span class=cF0> / d;
|
|
<a name="l50"></a> </span><span class=cF1>if</span><span class=cF0> (dy >= </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l51"></a> dy = </span><span class=cFE>0x100000000</span><span class=cF0>;
|
|
<a name="l52"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l53"></a> dy = -</span><span class=cFE>0x100000000</span><span class=cF0>;
|
|
<a name="l54"></a> dz = dz << </span><span class=cFE>32</span><span class=cF0> / d;
|
|
<a name="l55"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l56"></a> }
|
|
<a name="l57"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l58"></a> {
|
|
<a name="l59"></a> </span><span class=cF1>if</span><span class=cF0> (d = adz)
|
|
<a name="l60"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l61"></a> dx = dx << </span><span class=cFE>32</span><span class=cF0> / d;
|
|
<a name="l62"></a> dy = dy << </span><span class=cFE>32</span><span class=cF0> / d;
|
|
<a name="l63"></a> </span><span class=cF1>if</span><span class=cF0> (dz >= </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l64"></a> dz = </span><span class=cFE>0x100000000</span><span class=cF0>;
|
|
<a name="l65"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l66"></a> dz = -</span><span class=cFE>0x100000000</span><span class=cF0>;
|
|
<a name="l67"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l68"></a> }
|
|
<a name="l69"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l70"></a> x1 <<= </span><span class=cFE>32</span><span class=cF0>;
|
|
<a name="l71"></a> y1 <<= </span><span class=cFE>32</span><span class=cF0>;
|
|
<a name="l72"></a> z1 <<= </span><span class=cFE>32</span><span class=cF0>;
|
|
<a name="l73"></a> </span><span class=cF1>for</span><span class=cF0> (j =</span><span class=cFE>0</span><span class=cF0>; j < </span><span class=cF1>start</span><span class=cF0>; j++)
|
|
<a name="l74"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l75"></a> x1 += dx;
|
|
<a name="l76"></a> y1 += dy;
|
|
<a name="l77"></a> z1 += dz;
|
|
<a name="l78"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l79"></a> </span><span class=cF1>if</span><span class=cF0> (step != </span><span class=cFE>1</span><span class=cF0> && step != </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l80"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l81"></a> dx *= step;
|
|
<a name="l82"></a> dy *= step;
|
|
<a name="l83"></a> dz *= step;
|
|
<a name="l84"></a> d /= step;
|
|
<a name="l85"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l86"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cF1>start</span><span class=cF0>; i <= d; i++)
|
|
<a name="l87"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l88"></a> </span><span class=cF1>if</span><span class=cF0> (</span><span class=cF7>(</span><span class=cF0>_x != x1.i32[</span><span class=cFE>1</span><span class=cF0>] || _y != y1.i32[</span><span class=cFE>1</span><span class=cF0>] || _z != z1.i32[</span><span class=cFE>1</span><span class=cF0>] || first</span><span class=cF7>)</span><span class=cF0> &&
|
|
<a name="l89"></a> !</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, x1.i32[</span><span class=cFE>1</span><span class=cF0>], y1.i32[</span><span class=cFE>1</span><span class=cF0>], z1.i32[</span><span class=cFE>1</span><span class=cF0>]</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l90"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l91"></a> first = </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l92"></a> _x = x1.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l93"></a> _y = y1.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l94"></a> _z = z1.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l95"></a> x1 += dx; y1+=dy; z1+=dz;
|
|
<a name="l96"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l97"></a> </span><span class=cF1>if</span><span class=cF0> (step == </span><span class=cFE>1</span><span class=cF0> && </span><span class=cF7>(</span><span class=cF0>_x != x2 || _y != y2 || _z != z2</span><span class=cF7>)</span><span class=cF0> && !</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, x2, y2, z2</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l98"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l99"></a>
|
|
<a name="l100"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l101"></a>}
|
|
<a name="l102"></a>
|
|
<a name="l103"></a>#</span><span class=cF1>help_index</span><span class=cF0> </span><span class=cF6>"Graphics/Math/3D Transformation"</span><span class=cF0>
|
|
<a name="l104"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4MulMat4x4Equ</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *dst, </span><span class=cF9>I64</span><span class=cF0> *m1, </span><span class=cF9>I64</span><span class=cF0> *m2)
|
|
<a name="l105"></a>{</span><span class=cF2>//Multiply 4x4 matrices and store in dst. Uses </span><a href="https://tomawezome.github.io/ZealOS/Demo/Lectures/FixedPoint.CC.html#l1"><span class=cF4>fixed-point</span></a><span class=cF2>.</span><span class=cF0>
|
|
<a name="l106"></a></span><span class=cF2>//Conceptually, the transform m1 is applied after m2</span><span class=cF0>
|
|
<a name="l107"></a> </span><span class=cF9>I64</span><span class=cF0> i, j, k;
|
|
<a name="l108"></a> </span><span class=cF1>F64</span><span class=cF0> sum;
|
|
<a name="l109"></a>
|
|
<a name="l110"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < </span><span class=cFE>4</span><span class=cF0>; i++)
|
|
<a name="l111"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l112"></a> </span><span class=cF1>for</span><span class=cF0> (j = </span><span class=cFE>0</span><span class=cF0>; j < </span><span class=cFE>4</span><span class=cF0>; j++)
|
|
<a name="l113"></a> {
|
|
<a name="l114"></a> sum = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l115"></a> </span><span class=cF1>for</span><span class=cF0> (k = </span><span class=cFE>0</span><span class=cF0>; k < </span><span class=cFE>4</span><span class=cF0>; k++)
|
|
<a name="l116"></a> sum += </span><span class=cF5>ToF64</span><span class=cF0>(m1[k + </span><span class=cFE>4</span><span class=cF0> * j]) * </span><span class=cF5>ToF64</span><span class=cF0>(m2[i + </span><span class=cFE>4</span><span class=cF0> * k]);
|
|
<a name="l117"></a> dst[i + </span><span class=cFE>4</span><span class=cF0> * j] = sum / </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l118"></a> }
|
|
<a name="l119"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l120"></a>
|
|
<a name="l121"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l122"></a>}
|
|
<a name="l123"></a>
|
|
<a name="l124"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4MulMat4x4New</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *m1, </span><span class=cF9>I64</span><span class=cF0> *m2, </span><span class=cF9>CTask</span><span class=cF0> *mem_task=</span><span class=cF3>NULL</span><span class=cF0>)
|
|
<a name="l125"></a>{</span><span class=cF2>//Multiply 4x4 matrices. Return MAlloced matrix. Uses </span><a href="https://tomawezome.github.io/ZealOS/Demo/Lectures/FixedPoint.CC.html#l1"><span class=cF4>fixed-point</span></a><span class=cF2>.</span><span class=cF0>
|
|
<a name="l126"></a></span><span class=cF2>//Conceptually, the transform m1 is applied after m2</span><span class=cF0>
|
|
<a name="l127"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>Mat4x4MulMat4x4Equ</span><span class=cF0>(</span><span class=cF5>MAlloc</span><span class=cF7>(</span><span class=cF1>sizeof</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0>) * </span><span class=cFE>16</span><span class=cF0>, mem_task</span><span class=cF7>)</span><span class=cF0>, m1, m2);
|
|
<a name="l128"></a>}
|
|
<a name="l129"></a>
|
|
<a name="l130"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4Equ</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *dst, </span><span class=cF9>I64</span><span class=cF0> *src)
|
|
<a name="l131"></a>{</span><span class=cF2>//Copy 4x4 Rot matrix.</span><span class=cF0>
|
|
<a name="l132"></a> </span><span class=cF5>MemCopy</span><span class=cF0>(dst, src, </span><span class=cF1>sizeof</span><span class=cF7>(</span><span class=cF9>I64</span><span class=cF7>)</span><span class=cF0> * </span><span class=cFE>16</span><span class=cF0>);
|
|
<a name="l133"></a>
|
|
<a name="l134"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l135"></a>}
|
|
<a name="l136"></a>
|
|
<a name="l137"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4New</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *src, </span><span class=cF9>CTask</span><span class=cF0> *mem_task=</span><span class=cF3>NULL</span><span class=cF0>)
|
|
<a name="l138"></a>{</span><span class=cF2>//Return MAlloced copy of 4x4 Rot matrix.</span><span class=cF0>
|
|
<a name="l139"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>Mat4x4Equ</span><span class=cF0>(</span><span class=cF5>MAlloc</span><span class=cF7>(</span><span class=cF1>sizeof</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0>) * </span><span class=cFE>16</span><span class=cF0>, mem_task</span><span class=cF7>)</span><span class=cF0>, src);
|
|
<a name="l140"></a>}
|
|
<a name="l141"></a>
|
|
<a name="l142"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4RotX</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *m, </span><span class=cF1>F64</span><span class=cF0> phi)
|
|
<a name="l143"></a>{</span><span class=cF2>//Rot matrix about X axis. Uses </span><a href="https://tomawezome.github.io/ZealOS/Demo/Lectures/FixedPoint.CC.html#l1"><span class=cF4>fixed-point</span></a><span class=cF2>.</span><span class=cF0>
|
|
<a name="l144"></a> </span><span class=cF1>F64</span><span class=cF0> my_cos = </span><span class=cF5>Cos</span><span class=cF0>(phi) * </span><span class=cF3>GR_SCALE</span><span class=cF0>, my_sin = </span><span class=cF5>Sin</span><span class=cF0>(phi) * </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l145"></a> </span><span class=cF9>I64</span><span class=cF0> r[</span><span class=cFE>16</span><span class=cF0>], r2[</span><span class=cFE>16</span><span class=cF0>];
|
|
<a name="l146"></a>
|
|
<a name="l147"></a> </span><span class=cF5>MemSet</span><span class=cF0>(r, </span><span class=cFE>0</span><span class=cF0>, </span><span class=cF1>sizeof</span><span class=cF7>(</span><span class=cF0>r</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l148"></a> r[</span><span class=cFE>5</span><span class=cF0>] = my_cos;
|
|
<a name="l149"></a> r[</span><span class=cFE>10</span><span class=cF0>] = my_cos;
|
|
<a name="l150"></a> r[</span><span class=cFE>9</span><span class=cF0>] = my_sin;
|
|
<a name="l151"></a> r[</span><span class=cFE>6</span><span class=cF0>] = -my_sin;
|
|
<a name="l152"></a> r[</span><span class=cFE>0</span><span class=cF0>] = </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l153"></a> r[</span><span class=cFE>15</span><span class=cF0>] = </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l154"></a>
|
|
<a name="l155"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>Mat4x4Equ</span><span class=cF0>(m, </span><span class=cF5>Mat4x4MulMat4x4Equ</span><span class=cF7>(</span><span class=cF0>r2, r, m</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l156"></a>}
|
|
<a name="l157"></a>
|
|
<a name="l158"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4RotY</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *m, </span><span class=cF1>F64</span><span class=cF0> omega)
|
|
<a name="l159"></a>{</span><span class=cF2>//Rot matrix about Y axis. Uses </span><a href="https://tomawezome.github.io/ZealOS/Demo/Lectures/FixedPoint.CC.html#l1"><span class=cF4>fixed-point</span></a><span class=cF2>.</span><span class=cF0>
|
|
<a name="l160"></a> </span><span class=cF1>F64</span><span class=cF0> my_cos = </span><span class=cF5>Cos</span><span class=cF0>(omega) * </span><span class=cF3>GR_SCALE</span><span class=cF0>, my_sin = </span><span class=cF5>Sin</span><span class=cF0>(omega) * </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l161"></a> </span><span class=cF9>I64</span><span class=cF0> r[</span><span class=cFE>16</span><span class=cF0>], r2[</span><span class=cFE>16</span><span class=cF0>];
|
|
<a name="l162"></a>
|
|
<a name="l163"></a> </span><span class=cF5>MemSet</span><span class=cF0>(r, </span><span class=cFE>0</span><span class=cF0>, </span><span class=cF1>sizeof</span><span class=cF7>(</span><span class=cF0>r</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l164"></a> r[</span><span class=cFE>0</span><span class=cF0>] = my_cos;
|
|
<a name="l165"></a> r[</span><span class=cFE>10</span><span class=cF0>] = my_cos;
|
|
<a name="l166"></a> r[</span><span class=cFE>8</span><span class=cF0>] = -my_sin;
|
|
<a name="l167"></a> r[</span><span class=cFE>2</span><span class=cF0>] = my_sin;
|
|
<a name="l168"></a> r[</span><span class=cFE>5</span><span class=cF0>] = </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l169"></a> r[</span><span class=cFE>15</span><span class=cF0>] = </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l170"></a>
|
|
<a name="l171"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>Mat4x4Equ</span><span class=cF0>(m, </span><span class=cF5>Mat4x4MulMat4x4Equ</span><span class=cF7>(</span><span class=cF0>r2, r, m</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l172"></a>}
|
|
<a name="l173"></a>
|
|
<a name="l174"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4RotZ</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *m, </span><span class=cF1>F64</span><span class=cF0> theta)
|
|
<a name="l175"></a>{</span><span class=cF2>//Rot matrix about Z axis. Uses </span><a href="https://tomawezome.github.io/ZealOS/Demo/Lectures/FixedPoint.CC.html#l1"><span class=cF4>fixed-point</span></a><span class=cF2>.</span><span class=cF0>
|
|
<a name="l176"></a> </span><span class=cF1>F64</span><span class=cF0> my_cos=</span><span class=cF5>Cos</span><span class=cF0>(theta)*</span><span class=cF3>GR_SCALE</span><span class=cF0>, my_sin=</span><span class=cF5>Sin</span><span class=cF0>(theta)*</span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l177"></a> </span><span class=cF9>I64</span><span class=cF0> r[</span><span class=cFE>16</span><span class=cF0>], r2[</span><span class=cFE>16</span><span class=cF0>];
|
|
<a name="l178"></a>
|
|
<a name="l179"></a> </span><span class=cF5>MemSet</span><span class=cF0>(r, </span><span class=cFE>0</span><span class=cF0>, </span><span class=cF1>sizeof</span><span class=cF7>(</span><span class=cF0>r</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l180"></a> r[</span><span class=cFE>0</span><span class=cF0>] = my_cos;
|
|
<a name="l181"></a> r[</span><span class=cFE>5</span><span class=cF0>] = my_cos;
|
|
<a name="l182"></a> r[</span><span class=cFE>4</span><span class=cF0>] = my_sin;
|
|
<a name="l183"></a> r[</span><span class=cFE>1</span><span class=cF0>] = -my_sin;
|
|
<a name="l184"></a> r[</span><span class=cFE>10</span><span class=cF0>] = </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l185"></a> r[</span><span class=cFE>15</span><span class=cF0>] = </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l186"></a>
|
|
<a name="l187"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>Mat4x4Equ</span><span class=cF0>(m, </span><span class=cF5>Mat4x4MulMat4x4Equ</span><span class=cF7>(</span><span class=cF0>r2, r, m</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l188"></a>}
|
|
<a name="l189"></a>
|
|
<a name="l190"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4Scale</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *m, </span><span class=cF1>F64</span><span class=cF0> s)
|
|
<a name="l191"></a>{</span><span class=cF2>//Scale 4x4 matrix by value.</span><span class=cF0>
|
|
<a name="l192"></a> </span><span class=cF9>I64</span><span class=cF0> i;
|
|
<a name="l193"></a>
|
|
<a name="l194"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < </span><span class=cFE>16</span><span class=cF0>; i++)
|
|
<a name="l195"></a> m[i] *= s;
|
|
<a name="l196"></a>
|
|
<a name="l197"></a> </span><span class=cF1>return</span><span class=cF0> m;
|
|
<a name="l198"></a>}
|
|
<a name="l199"></a>
|
|
<a name="l200"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>U0</span><span class=cF0> </span><span class=cF5>DCThickScale</span><span class=cF0>(</span><span class=cF9>CDC</span><span class=cF0> *dc=</span><span class=cFB>gr</span><span class=cF0>.dc)
|
|
<a name="l201"></a>{</span><span class=cF2>//Scale device context's thick by norm of transformation.</span><span class=cF0>
|
|
<a name="l202"></a> </span><span class=cF9>I64</span><span class=cF0> d;
|
|
<a name="l203"></a>
|
|
<a name="l204"></a> </span><span class=cF1>if</span><span class=cF0> (dc->flags & </span><span class=cF3>DCF_TRANSFORMATION</span><span class=cF0>)
|
|
<a name="l205"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l206"></a> </span><span class=cF1>if</span><span class=cF0> (dc->thick)
|
|
<a name="l207"></a> {
|
|
<a name="l208"></a> d = dc->thick * dc->r_norm + </span><span class=cFE>0x80000000</span><span class=cF0>; </span><span class=cF2>//Round</span><span class=cF0>
|
|
<a name="l209"></a> dc->thick = d.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l210"></a> </span><span class=cF1>if</span><span class=cF0> (dc->thick < </span><span class=cFE>1</span><span class=cF0>)
|
|
<a name="l211"></a> dc->thick = </span><span class=cFE>1</span><span class=cF0>;
|
|
<a name="l212"></a> }
|
|
<a name="l213"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l214"></a>}
|
|
<a name="l215"></a>
|
|
<a name="l216"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4TranslationEqu</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *r, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z)
|
|
<a name="l217"></a>{</span><span class=cF2>//Set translation values in 4x4 matrix. Uses </span><a href="https://tomawezome.github.io/ZealOS/Demo/Lectures/FixedPoint.CC.html#l1"><span class=cF4>fixed-point</span></a><span class=cF2>.</span><span class=cF0>
|
|
<a name="l218"></a> r[</span><span class=cFE>0</span><span class=cF0> * </span><span class=cFE>4</span><span class=cF0> + </span><span class=cFE>3</span><span class=cF0>] = x << </span><span class=cFE>32</span><span class=cF0>;
|
|
<a name="l219"></a> r[</span><span class=cFE>1</span><span class=cF0> * </span><span class=cFE>4</span><span class=cF0> + </span><span class=cFE>3</span><span class=cF0>] = y << </span><span class=cFE>32</span><span class=cF0>;
|
|
<a name="l220"></a> r[</span><span class=cFE>2</span><span class=cF0> * </span><span class=cFE>4</span><span class=cF0> + </span><span class=cFE>3</span><span class=cF0>] = z << </span><span class=cFE>32</span><span class=cF0>;
|
|
<a name="l221"></a> r[</span><span class=cFE>3</span><span class=cF0> * </span><span class=cFE>4</span><span class=cF0> + </span><span class=cFE>3</span><span class=cF0>] = </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l222"></a>
|
|
<a name="l223"></a> </span><span class=cF1>return</span><span class=cF0> r;
|
|
<a name="l224"></a>}
|
|
<a name="l225"></a>
|
|
<a name="l226"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> *</span><span class=cF5>Mat4x4TranslationAdd</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *r, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z)
|
|
<a name="l227"></a>{</span><span class=cF2>//Add translation to 4x4 matrix. Uses </span><a href="https://tomawezome.github.io/ZealOS/Demo/Lectures/FixedPoint.CC.html#l1"><span class=cF4>fixed-point</span></a><span class=cF2>.</span><span class=cF0>
|
|
<a name="l228"></a> r[</span><span class=cFE>0</span><span class=cF0> * </span><span class=cFE>4</span><span class=cF0> + </span><span class=cFE>3</span><span class=cF0>] += x << </span><span class=cFE>32</span><span class=cF0>;
|
|
<a name="l229"></a> r[</span><span class=cFE>1</span><span class=cF0> * </span><span class=cFE>4</span><span class=cF0> + </span><span class=cFE>3</span><span class=cF0>] += y << </span><span class=cFE>32</span><span class=cF0>;
|
|
<a name="l230"></a> r[</span><span class=cFE>2</span><span class=cF0> * </span><span class=cFE>4</span><span class=cF0> + </span><span class=cFE>3</span><span class=cF0>] += z << </span><span class=cFE>32</span><span class=cF0>;
|
|
<a name="l231"></a> r[</span><span class=cFE>3</span><span class=cF0> * </span><span class=cFE>4</span><span class=cF0> + </span><span class=cFE>3</span><span class=cF0>] = </span><span class=cF3>GR_SCALE</span><span class=cF0>;
|
|
<a name="l232"></a>
|
|
<a name="l233"></a> </span><span class=cF1>return</span><span class=cF0> r;
|
|
<a name="l234"></a>}
|
|
<a name="l235"></a>
|
|
<a name="l236"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>DCSymmetrySet</span><span class=cF0>(</span><span class=cF9>CDC</span><span class=cF0> *dc=</span><span class=cFB>gr</span><span class=cF0>.dc, </span><span class=cF9>I64</span><span class=cF0> x1, </span><span class=cF9>I64</span><span class=cF0> y1, </span><span class=cF9>I64</span><span class=cF0> x2, </span><span class=cF9>I64</span><span class=cF0> y2)
|
|
<a name="l237"></a>{</span><span class=cF2>//2D. Set device context's symmetry.</span><span class=cF0>
|
|
<a name="l238"></a> </span><span class=cF1>F64</span><span class=cF0> d;
|
|
<a name="l239"></a>
|
|
<a name="l240"></a> </span><span class=cF1>if</span><span class=cF0> (y1 == y2 && x1 == x2)
|
|
<a name="l241"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l242"></a> dc->sym.snx = y2 - y1;
|
|
<a name="l243"></a> dc->sym.sny = x1 - x2;
|
|
<a name="l244"></a> dc->sym.snz = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l245"></a> </span><span class=cF1>if</span><span class=cF0> (d = </span><span class=cF5>Sqrt</span><span class=cF7>(</span><span class=cF5>SqrI64</span><span class=cF0>(dc->sym.snx) + </span><span class=cF5>SqrI64</span><span class=cF0>(dc->sym.sny) + </span><span class=cF5>SqrI64</span><span class=cF0>(dc->sym.snz)</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l246"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l247"></a> d = </span><span class=cF3>GR_SCALE</span><span class=cF0> / d;
|
|
<a name="l248"></a> dc->sym.snx *= d;
|
|
<a name="l249"></a> dc->sym.sny *= d;
|
|
<a name="l250"></a> dc->sym.snz *= d;
|
|
<a name="l251"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l252"></a> dc->sym.sx = x1;
|
|
<a name="l253"></a> dc->sym.sy = y1;
|
|
<a name="l254"></a> dc->sym.sz = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l255"></a>
|
|
<a name="l256"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l257"></a>}
|
|
<a name="l258"></a>
|
|
<a name="l259"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>DCSymmetry3Set</span><span class=cF0>(</span><span class=cF9>CDC</span><span class=cF0> *dc=</span><span class=cFB>gr</span><span class=cF0>.dc, </span><span class=cF9>I64</span><span class=cF0> x1, </span><span class=cF9>I64</span><span class=cF0> y1, </span><span class=cF9>I64</span><span class=cF0> z1, </span><span class=cF9>I64</span><span class=cF0> x2, </span><span class=cF9>I64</span><span class=cF0> y2, </span><span class=cF9>I64</span><span class=cF0> z2, </span><span class=cF9>I64</span><span class=cF0> x3, </span><span class=cF9>I64</span><span class=cF0> y3, </span><span class=cF9>I64</span><span class=cF0> z3)
|
|
<a name="l260"></a>{</span><span class=cF2>//3D. Set device context's symmetry.</span><span class=cF0>
|
|
<a name="l261"></a> </span><span class=cF1>F64</span><span class=cF0> d, x, y, z, xx, yy, zz;
|
|
<a name="l262"></a> </span><span class=cF9>I64</span><span class=cF0> xx1, yy1, zz1, xx2, yy2, zz2, *r;
|
|
<a name="l263"></a>
|
|
<a name="l264"></a> xx1 = x1 - x2;
|
|
<a name="l265"></a> yy1 = y1 - y2;
|
|
<a name="l266"></a> zz1 = z1 - z2;
|
|
<a name="l267"></a> xx2 = x3 - x2;
|
|
<a name="l268"></a> yy2 = y3 - y2;
|
|
<a name="l269"></a> zz2 = z3 - z2;
|
|
<a name="l270"></a>
|
|
<a name="l271"></a> </span><span class=cF1>if</span><span class=cF0> (!xx1 && !yy1 && !zz1 || !xx2 && !yy2 && !zz2 || xx1 == xx2 && yy1 == yy2 && zz1 == zz2)
|
|
<a name="l272"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l273"></a>
|
|
<a name="l274"></a> x = yy1 * zz2 - zz1 * yy2;
|
|
<a name="l275"></a> y = -xx1 * zz2 + zz1 * xx2;
|
|
<a name="l276"></a> z = xx1 * yy2 - yy1 * xx2;
|
|
<a name="l277"></a> </span><span class=cF1>if</span><span class=cF0> (dc->flags & </span><span class=cF3>DCF_TRANSFORMATION</span><span class=cF0>)
|
|
<a name="l278"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l279"></a> r = dc->r;
|
|
<a name="l280"></a> xx = x * r[</span><span class=cFE>0</span><span class=cF0>] + y * r[</span><span class=cFE>1</span><span class=cF0>] + z * r[</span><span class=cFE>2</span><span class=cF0>];
|
|
<a name="l281"></a> yy = x * r[</span><span class=cFE>4</span><span class=cF0>] + y * r[</span><span class=cFE>5</span><span class=cF0>] + z * r[</span><span class=cFE>6</span><span class=cF0>];
|
|
<a name="l282"></a> zz = x * r[</span><span class=cFE>8</span><span class=cF0>] + y * r[</span><span class=cFE>9</span><span class=cF0>] + z * r[</span><span class=cFE>10</span><span class=cF0>];
|
|
<a name="l283"></a> x = xx;
|
|
<a name="l284"></a> y = yy;
|
|
<a name="l285"></a> z = zz;
|
|
<a name="l286"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l287"></a> </span><span class=cF1>if</span><span class=cF0> (d = </span><span class=cF5>Sqrt</span><span class=cF7>(</span><span class=cF5>Sqr</span><span class=cF0>(x) + </span><span class=cF5>Sqr</span><span class=cF0>(y) + </span><span class=cF5>Sqr</span><span class=cF0>(z)</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l288"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l289"></a> d = </span><span class=cF3>GR_SCALE</span><span class=cF0> / d;
|
|
<a name="l290"></a> dc->sym.snx = d * x;
|
|
<a name="l291"></a> dc->sym.sny = d * y;
|
|
<a name="l292"></a> dc->sym.snz = d * z;
|
|
<a name="l293"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l294"></a> </span><span class=cF1>if</span><span class=cF0> (dc->flags & </span><span class=cF3>DCF_TRANSFORMATION</span><span class=cF0>)
|
|
<a name="l295"></a> (*dc->transform)(dc, &x1, &y1, &z1);
|
|
<a name="l296"></a> dc->sym.sx = x1;
|
|
<a name="l297"></a> dc->sym.sy = y1;
|
|
<a name="l298"></a> dc->sym.sz = z1;
|
|
<a name="l299"></a>
|
|
<a name="l300"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l301"></a>}
|
|
<a name="l302"></a>
|
|
<a name="l303"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>U0</span><span class=cF0> </span><span class=cF5>DCReflect</span><span class=cF0>(</span><span class=cF9>CDC</span><span class=cF0> *dc, </span><span class=cF9>I64</span><span class=cF0> *_x, </span><span class=cF9>I64</span><span class=cF0> *_y, </span><span class=cF9>I64</span><span class=cF0> *_z)
|
|
<a name="l304"></a>{</span><span class=cF2>//Reflect 3D point about device context's symmetry. Uses </span><a href="https://tomawezome.github.io/ZealOS/Demo/Lectures/FixedPoint.CC.html#l1"><span class=cF4>fixed-point</span></a><span class=cF2>.</span><span class=cF0>
|
|
<a name="l305"></a> </span><span class=cF9>I64</span><span class=cF0> x = *_x << </span><span class=cFE>32</span><span class=cF0>,
|
|
<a name="l306"></a> y = *_y << </span><span class=cFE>32</span><span class=cF0>,
|
|
<a name="l307"></a> z = *_z << </span><span class=cFE>32</span><span class=cF0>,
|
|
<a name="l308"></a> xx = *_x - dc->sym.sx,
|
|
<a name="l309"></a> yy = *_y - dc->sym.sy,
|
|
<a name="l310"></a> zz = *_z - dc->sym.sz,
|
|
<a name="l311"></a> d = (xx * dc->sym.snx + yy * dc->sym.sny + zz * dc->sym.snz) >> </span><span class=cFE>16</span><span class=cF0>,
|
|
<a name="l312"></a> xn, yn, zn, xx2, yy2, zz2;
|
|
<a name="l313"></a>
|
|
<a name="l314"></a> xn = d * dc->sym.snx >> </span><span class=cFE>15</span><span class=cF0>;
|
|
<a name="l315"></a> yn = d * dc->sym.sny >> </span><span class=cFE>15</span><span class=cF0>;
|
|
<a name="l316"></a> zn = d * dc->sym.snz >> </span><span class=cFE>15</span><span class=cF0>;
|
|
<a name="l317"></a> xx = x - xn;
|
|
<a name="l318"></a> yy = y - yn;
|
|
<a name="l319"></a> zz = z - zn;
|
|
<a name="l320"></a> xx2 = x + xn;
|
|
<a name="l321"></a> yy2 = y + yn;
|
|
<a name="l322"></a> zz2 = z + zn;
|
|
<a name="l323"></a> </span><span class=cF1>if</span><span class=cF0> (</span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>xx >> </span><span class=cFE>16</span><span class=cF0> - dc->sym.sx << </span><span class=cFE>16</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>yy >> </span><span class=cFE>16</span><span class=cF0> - dc->sym.sy << </span><span class=cFE>16</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>zz >> </span><span class=cFE>16</span><span class=cF0> - dc->sym.sz << </span><span class=cFE>16</span><span class=cF7>)</span><span class=cF0> <
|
|
<a name="l324"></a> </span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>xx2 >> </span><span class=cFE>16</span><span class=cF0> - dc->sym.sx << </span><span class=cFE>16</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>yy2 >> </span><span class=cFE>16</span><span class=cF0> - dc->sym.sy << </span><span class=cFE>16</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>zz2 >> </span><span class=cFE>16</span><span class=cF0> - dc->sym.sz << </span><span class=cFE>16</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l325"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l326"></a> *_x = xx.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l327"></a> *_y = yy.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l328"></a> *_z = zz.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l329"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l330"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l331"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l332"></a> *_x = xx2.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l333"></a> *_y = yy2.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l334"></a> *_z = zz2.i32[</span><span class=cFE>1</span><span class=cF0>];
|
|
<a name="l335"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l336"></a>}
|
|
<a name="l337"></a>
|
|
<a name="l338"></a>#</span><span class=cF1>help_index</span><span class=cF0> </span><span class=cF6>"Graphics/Math"</span><span class=cF0>
|
|
<a name="l339"></a>#</span><span class=cF1>define</span><span class=cF0> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> </span><span class=cFE>24</span><span class=cF0>
|
|
<a name="l340"></a>#</span><span class=cF1>define</span><span class=cF0> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0> </span><span class=cFE>8</span><span class=cF0>
|
|
<a name="l341"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>Circle</span><span class=cF0>(</span><span class=cF1>U8</span><span class=cF0> *aux_data, </span><span class=cF9>I64</span><span class=cF0> cx, </span><span class=cF9>I64</span><span class=cF0> cy, </span><span class=cF9>I64</span><span class=cF0> cz, </span><span class=cF9>I64</span><span class=cF0> radius, </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF1>U8</span><span class=cF0> *aux, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z</span><span class=cF7>)</span><span class=cF0>,
|
|
<a name="l342"></a> </span><span class=cF9>I64</span><span class=cF0> step=</span><span class=cFE>1</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> start_radians=</span><span class=cFE>0</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> len_radians=</span><span class=cFE>2</span><span class=cF0>*</span><span class=cF3>pi</span><span class=cF0>)
|
|
<a name="l343"></a>{</span><span class=cF2>//Step through circle arc calling callback.</span><span class=cF0>
|
|
<a name="l344"></a> </span><span class=cF9>I64</span><span class=cF0> i, j, len = </span><span class=cF5>Ceil</span><span class=cF0>(len_radians * radius), x, y, x1, y1, s1, s2, c;
|
|
<a name="l345"></a> </span><span class=cF1>F64</span><span class=cF0> t;
|
|
<a name="l346"></a>
|
|
<a name="l347"></a> </span><span class=cF1>if</span><span class=cF0> (radius <= </span><span class=cFE>0</span><span class=cF0> || !step)
|
|
<a name="l348"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l349"></a> t = </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> / radius;
|
|
<a name="l350"></a> c = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Cos</span><span class=cF0>(t);
|
|
<a name="l351"></a> </span><span class=cF1>if</span><span class=cF0> (step < </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l352"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l353"></a> step = -step;
|
|
<a name="l354"></a> s2 = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Sin</span><span class=cF0>(t);
|
|
<a name="l355"></a> s1 = -s2;
|
|
<a name="l356"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l357"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l358"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l359"></a> s1 = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Sin</span><span class=cF0>(t);
|
|
<a name="l360"></a> s2 = -s1;
|
|
<a name="l361"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l362"></a> </span><span class=cF1>if</span><span class=cF0> (start_radians)
|
|
<a name="l363"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l364"></a> x = radius * </span><span class=cF5>Cos</span><span class=cF0>(start_radians);
|
|
<a name="l365"></a> y = -radius * </span><span class=cF5>Sin</span><span class=cF0>(start_radians);
|
|
<a name="l366"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l367"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l368"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l369"></a> x = radius;
|
|
<a name="l370"></a> y = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l371"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l372"></a> x <<= </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l373"></a> y <<= </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l374"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i <= len; i += step)
|
|
<a name="l375"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l376"></a> </span><span class=cF1>if</span><span class=cF0> (!</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, cx + x >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>, cy + y >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>, cz</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l377"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l378"></a> </span><span class=cF1>for</span><span class=cF0> (j = </span><span class=cFE>0</span><span class=cF0>; j < step; j++)
|
|
<a name="l379"></a> {
|
|
<a name="l380"></a> x1 =(c * x + s1 * y) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l381"></a> y1 =(s2 * x + c * y) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l382"></a> x = x1;
|
|
<a name="l383"></a> y = y1;
|
|
<a name="l384"></a> }
|
|
<a name="l385"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l386"></a>
|
|
<a name="l387"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l388"></a>}
|
|
<a name="l389"></a>
|
|
<a name="l390"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>Ellipse</span><span class=cF0>(</span><span class=cF1>U8</span><span class=cF0> *aux_data, </span><span class=cF9>I64</span><span class=cF0> cx, </span><span class=cF9>I64</span><span class=cF0> cy, </span><span class=cF9>I64</span><span class=cF0> cz, </span><span class=cF9>I64</span><span class=cF0> x_radius, </span><span class=cF9>I64</span><span class=cF0> y_radius,
|
|
<a name="l391"></a> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF1>U8</span><span class=cF0> *aux, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z</span><span class=cF7>)</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> rot_angle=</span><span class=cFE>0</span><span class=cF0>,
|
|
<a name="l392"></a> </span><span class=cF9>I64</span><span class=cF0> step=</span><span class=cFE>1</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> start_radians=</span><span class=cFE>0</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> len_radians=</span><span class=cFE>2</span><span class=cF0>*</span><span class=cF3>pi</span><span class=cF0>)
|
|
<a name="l393"></a>{</span><span class=cF2>//Step through ellipse arc calling callback.</span><span class=cF0>
|
|
<a name="l394"></a> </span><span class=cF9>I64</span><span class=cF0> i, j, len, x, y, _x, _y, x1, y1, x2, y2, s1, s2, c, s12, s22, c2;
|
|
<a name="l395"></a> </span><span class=cF1>F64</span><span class=cF0> t;
|
|
<a name="l396"></a> </span><span class=cF1>Bool</span><span class=cF0> first = </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l397"></a>
|
|
<a name="l398"></a> </span><span class=cF1>if</span><span class=cF0> (x_radius <= </span><span class=cFE>0</span><span class=cF0> || y_radius <= </span><span class=cFE>0</span><span class=cF0> || !step)
|
|
<a name="l399"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l400"></a> </span><span class=cF1>if</span><span class=cF0> (x_radius >= y_radius)
|
|
<a name="l401"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l402"></a> t = </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> / x_radius;
|
|
<a name="l403"></a> len = </span><span class=cF5>Ceil</span><span class=cF0>(len_radians * x_radius);
|
|
<a name="l404"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l405"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l406"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l407"></a> t = </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> / y_radius;
|
|
<a name="l408"></a> len = </span><span class=cF5>Ceil</span><span class=cF0>(len_radians * y_radius);
|
|
<a name="l409"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l410"></a>
|
|
<a name="l411"></a> c = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Cos</span><span class=cF0>(t);
|
|
<a name="l412"></a> </span><span class=cF1>if</span><span class=cF0> (step < </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l413"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l414"></a> step = -step;
|
|
<a name="l415"></a> s2 =</span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Sin</span><span class=cF0>(t);
|
|
<a name="l416"></a> s1 =-s2;
|
|
<a name="l417"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l418"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l419"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l420"></a> s1 = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Sin</span><span class=cF0>(t);
|
|
<a name="l421"></a> s2 = -s1;
|
|
<a name="l422"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l423"></a>
|
|
<a name="l424"></a> c2 = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Cos</span><span class=cF0>(rot_angle);
|
|
<a name="l425"></a> s12 = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Sin</span><span class=cF0>(rot_angle);
|
|
<a name="l426"></a> s22 = -s12;
|
|
<a name="l427"></a>
|
|
<a name="l428"></a> </span><span class=cF1>if</span><span class=cF0> (start_radians)
|
|
<a name="l429"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l430"></a> x = x_radius * </span><span class=cF5>Cos</span><span class=cF0>(start_radians);
|
|
<a name="l431"></a> y = -x_radius * </span><span class=cF5>Sin</span><span class=cF0>(start_radians);
|
|
<a name="l432"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l433"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l434"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l435"></a> x = x_radius;
|
|
<a name="l436"></a> y = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l437"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l438"></a> x <<= </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l439"></a> y <<= </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l440"></a> x2 = x;
|
|
<a name="l441"></a> y2 = y;
|
|
<a name="l442"></a>
|
|
<a name="l443"></a> y1 = y2 * y_radius / x_radius;
|
|
<a name="l444"></a> x = (c2 * x2 + s12 * y1) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l445"></a> y = (s22 * x2 + c2 * y1) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l446"></a>
|
|
<a name="l447"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i <= len; i += step)
|
|
<a name="l448"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l449"></a> </span><span class=cF1>if</span><span class=cF0> (</span><span class=cF7>(</span><span class=cF0>x >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0> != _x || y >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0> != _y || first</span><span class=cF7>)</span><span class=cF0> &&
|
|
<a name="l450"></a> !</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, cx + x >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>, cy + y >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>, cz</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l451"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l452"></a>
|
|
<a name="l453"></a> _x = x >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l454"></a> _y = y >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l455"></a> first = </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l456"></a> </span><span class=cF1>for</span><span class=cF0> (j = </span><span class=cFE>0</span><span class=cF0>; j < step; j++)
|
|
<a name="l457"></a> {
|
|
<a name="l458"></a> x1 = (c * x2 + s1 * y2) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l459"></a> y1 = (s2 * x2 + c * y2) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l460"></a> x2 = x1;
|
|
<a name="l461"></a> y2 = y1;
|
|
<a name="l462"></a> y1 = y1 * y_radius/x_radius;
|
|
<a name="l463"></a> x = (c2 * x1+ s12 * y1) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l464"></a> y = (s22 * x1 + c2 * y1) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l465"></a> }
|
|
<a name="l466"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l467"></a>
|
|
<a name="l468"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l469"></a>}
|
|
<a name="l470"></a>
|
|
<a name="l471"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>RegPoly</span><span class=cF0>(</span><span class=cF1>U8</span><span class=cF0> *aux_data, </span><span class=cF9>I64</span><span class=cF0> cx, </span><span class=cF9>I64</span><span class=cF0> cy, </span><span class=cF9>I64</span><span class=cF0> cz, </span><span class=cF9>I64</span><span class=cF0> x_radius, </span><span class=cF9>I64</span><span class=cF0> y_radius, </span><span class=cF9>I64</span><span class=cF0> sides,
|
|
<a name="l472"></a> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF1>U8</span><span class=cF0> *aux, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z</span><span class=cF7>)</span><span class=cF0>,
|
|
<a name="l473"></a> </span><span class=cF1>F64</span><span class=cF0> rot_angle=</span><span class=cFE>0</span><span class=cF0>, </span><span class=cF9>I64</span><span class=cF0> step=</span><span class=cFE>1</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> start_radians=</span><span class=cFE>0</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> len_radians=</span><span class=cFE>2</span><span class=cF0>*</span><span class=cF3>pi</span><span class=cF0>)
|
|
<a name="l474"></a>{</span><span class=cF2>//Step through regular polygon calling callback.</span><span class=cF0>
|
|
<a name="l475"></a> </span><span class=cF9>I64</span><span class=cF0> i, n, x, y, x1, y1, x2, y2, xx1, yy1, xx2, yy2, s1, s2, c, s12, s22, c2;
|
|
<a name="l476"></a> </span><span class=cF1>F64</span><span class=cF0> angle_step;
|
|
<a name="l477"></a>
|
|
<a name="l478"></a> </span><span class=cF1>if</span><span class=cF0> (sides <= </span><span class=cFE>0</span><span class=cF0> || x_radius <= </span><span class=cFE>0</span><span class=cF0> || y_radius <= </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l479"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l480"></a>
|
|
<a name="l481"></a> angle_step = </span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0> / sides;
|
|
<a name="l482"></a> n = len_radians * sides / (</span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0>);
|
|
<a name="l483"></a>
|
|
<a name="l484"></a> s1 = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Sin</span><span class=cF0>(angle_step);
|
|
<a name="l485"></a> s2 = -s1;
|
|
<a name="l486"></a> c = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Cos</span><span class=cF0>(angle_step);
|
|
<a name="l487"></a>
|
|
<a name="l488"></a> s12 = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Sin</span><span class=cF0>(rot_angle);
|
|
<a name="l489"></a> s22 = -s12;
|
|
<a name="l490"></a> c2 = </span><span class=cFE>1</span><span class=cF0> << </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0> * </span><span class=cF5>Cos</span><span class=cF0>(rot_angle);
|
|
<a name="l491"></a>
|
|
<a name="l492"></a> </span><span class=cF1>if</span><span class=cF0> (start_radians)
|
|
<a name="l493"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l494"></a> x = x_radius * </span><span class=cF5>Cos</span><span class=cF0>(start_radians);
|
|
<a name="l495"></a> y = -x_radius * </span><span class=cF5>Sin</span><span class=cF0>(start_radians);
|
|
<a name="l496"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l497"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l498"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l499"></a> x = x_radius;
|
|
<a name="l500"></a> y = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l501"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l502"></a> x <<= </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l503"></a> y <<= </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l504"></a> x2 = x;
|
|
<a name="l505"></a> y2 = y;
|
|
<a name="l506"></a>
|
|
<a name="l507"></a> y1 = y2 * y_radius / x_radius;
|
|
<a name="l508"></a> x = (c2 * x2 + s12 * y1) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l509"></a> y = (s22 * x2 + c2 * y1) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l510"></a>
|
|
<a name="l511"></a> xx1 = cx + x >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l512"></a> yy1 = cy + y >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l513"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < n; i++)
|
|
<a name="l514"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l515"></a> x1 = (c * x2 + s1 * y2) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l516"></a> y1 = (s2 * x2 + c * y2) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l517"></a> x2 = x1;
|
|
<a name="l518"></a> y2 = y1;
|
|
<a name="l519"></a> y1 = y1 * y_radius / x_radius;
|
|
<a name="l520"></a> x = (c2 * x1 + s12 * y1) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l521"></a> y = (s22 * x1 + c2 * y1) >> </span><span class=cF3>GR_SCALE1_BITS</span><span class=cF0>;
|
|
<a name="l522"></a> xx2 = cx + x >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l523"></a> yy2 = cy + y >> </span><span class=cF3>GR_SCALE2_BITS</span><span class=cF0>;
|
|
<a name="l524"></a> </span><span class=cF1>if</span><span class=cF0> (!</span><span class=cF5>Line</span><span class=cF7>(</span><span class=cF0>aux_data, xx1, yy1, cz, xx2, yy2, cz, fp_plot, step</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l525"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l526"></a> xx1 = xx2;
|
|
<a name="l527"></a> yy1 = yy2;
|
|
<a name="l528"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l529"></a>
|
|
<a name="l530"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l531"></a>}
|
|
<a name="l532"></a>
|
|
<a name="l533"></a>#</span><span class=cF1>help_index</span><span class=cF0> </span><span class=cF6>"Graphics/Data Types/D3I32;Math/Data Types/D3I32;Data Types/D3I32"</span><span class=cF0>
|
|
<a name="l534"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>D3I32Dist</span><span class=cF0>(</span><span class=cF9>CD3I32</span><span class=cF0> *p1, </span><span class=cF9>CD3I32</span><span class=cF0> *p2)
|
|
<a name="l535"></a>{</span><span class=cF2>//Distance</span><span class=cF0>
|
|
<a name="l536"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>Sqrt</span><span class=cF0>(</span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>p1->x - p2->x</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>p1->y - p2->y</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>p1->z - p2->z</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l537"></a>}
|
|
<a name="l538"></a>
|
|
<a name="l539"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> </span><span class=cF5>D3I32DistSqr</span><span class=cF0>(</span><span class=cF9>CD3I32</span><span class=cF0> *p1, </span><span class=cF9>CD3I32</span><span class=cF0> *p2)
|
|
<a name="l540"></a>{</span><span class=cF2>//Distance Squared</span><span class=cF0>
|
|
<a name="l541"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>SqrI64</span><span class=cF0>(p1->x - p2->x) + </span><span class=cF5>SqrI64</span><span class=cF0>(p1->y - p2->y) + </span><span class=cF5>SqrI64</span><span class=cF0>(p1->z - p2->z);
|
|
<a name="l542"></a>}
|
|
<a name="l543"></a>
|
|
<a name="l544"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>D3I32Norm</span><span class=cF0>(</span><span class=cF9>CD3I32</span><span class=cF0> *p)
|
|
<a name="l545"></a>{</span><span class=cF2>//Norm</span><span class=cF0>
|
|
<a name="l546"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>Sqrt</span><span class=cF0>(</span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>p->x</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>p->y</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>SqrI64</span><span class=cF7>(</span><span class=cF0>p->z</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l547"></a>}
|
|
<a name="l548"></a>
|
|
<a name="l549"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> </span><span class=cF5>D3I32NormSqr</span><span class=cF0>(</span><span class=cF9>CD3I32</span><span class=cF0> *p)
|
|
<a name="l550"></a>{</span><span class=cF2>//Norm Squared</span><span class=cF0>
|
|
<a name="l551"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>SqrI64</span><span class=cF0>(p->x) + </span><span class=cF5>SqrI64</span><span class=cF0>(p->y) + </span><span class=cF5>SqrI64</span><span class=cF0>(p->z);
|
|
<a name="l552"></a>}
|
|
<a name="l553"></a>
|
|
<a name="l554"></a>#</span><span class=cF1>help_index</span><span class=cF0> </span><span class=cF6>"Graphics/Math"</span><span class=cF0>
|
|
<a name="l555"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>Bezier2</span><span class=cF0>(</span><span class=cF1>U8</span><span class=cF0> *aux_data, </span><span class=cF9>CD3I32</span><span class=cF0> *ctrl, </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF1>U8</span><span class=cF0> *aux, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z</span><span class=cF7>)</span><span class=cF0>, </span><span class=cF1>Bool</span><span class=cF0> first=</span><span class=cF3>TRUE</span><span class=cF0>)
|
|
<a name="l556"></a>{</span><span class=cF2>//Go in 2nd order bezier calling callback.</span><span class=cF0>
|
|
<a name="l557"></a> </span><span class=cF9>I64</span><span class=cF0> x, y, z, xx, yy, zz, dx, dy, dz, d_max;
|
|
<a name="l558"></a> </span><span class=cF1>F64</span><span class=cF0> x0 = ctrl[</span><span class=cFE>0</span><span class=cF0>].x,
|
|
<a name="l559"></a> y0 = ctrl[</span><span class=cFE>0</span><span class=cF0>].y,
|
|
<a name="l560"></a> z0 = ctrl[</span><span class=cFE>0</span><span class=cF0>].z,
|
|
<a name="l561"></a> x1 = ctrl[</span><span class=cFE>1</span><span class=cF0>].x - x0,
|
|
<a name="l562"></a> y1 = ctrl[</span><span class=cFE>1</span><span class=cF0>].y - y0,
|
|
<a name="l563"></a> z1 = ctrl[</span><span class=cFE>1</span><span class=cF0>].z - z0,
|
|
<a name="l564"></a> x2 = ctrl[</span><span class=cFE>2</span><span class=cF0>].x - x0,
|
|
<a name="l565"></a> y2 = ctrl[</span><span class=cFE>2</span><span class=cF0>].y - y0,
|
|
<a name="l566"></a> z2 = ctrl[</span><span class=cFE>2</span><span class=cF0>].z - z0,
|
|
<a name="l567"></a> t, d = </span><span class=cF5>D3I32Dist</span><span class=cF0>(&ctrl[</span><span class=cFE>0</span><span class=cF0>], &ctrl[</span><span class=cFE>1</span><span class=cF0>]) + </span><span class=cF5>D3I32Dist</span><span class=cF0>(&ctrl[</span><span class=cFE>1</span><span class=cF0>], &ctrl[</span><span class=cFE>2</span><span class=cF0>]) + </span><span class=cF5>D3I32Dist</span><span class=cF0>(&ctrl[</span><span class=cFE>2</span><span class=cF0>], &ctrl[</span><span class=cFE>0</span><span class=cF0>]),
|
|
<a name="l568"></a> s = </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>5</span><span class=cF0> / d, t1, t2;
|
|
<a name="l569"></a>
|
|
<a name="l570"></a> xx = x0;
|
|
<a name="l571"></a> yy = y0;
|
|
<a name="l572"></a> zz = z0;
|
|
<a name="l573"></a> </span><span class=cF1>if</span><span class=cF0> (first && !</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, xx, yy, zz</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l574"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l575"></a> </span><span class=cF1>for</span><span class=cF0> (t = </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>; t <= </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>; t += s)
|
|
<a name="l576"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l577"></a> t1 = t * (</span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> - t);
|
|
<a name="l578"></a> t2 = t * t;
|
|
<a name="l579"></a> x = x0 + x1 * t1 + x2 * t2;
|
|
<a name="l580"></a> y = y0 + y1 * t1 + y2 * t2;
|
|
<a name="l581"></a> z = z0 + z1 * t1 + z2 * t2;
|
|
<a name="l582"></a> dx = </span><span class=cF5>AbsI64</span><span class=cF0>(x - xx);
|
|
<a name="l583"></a> dy = </span><span class=cF5>AbsI64</span><span class=cF0>(y - yy);
|
|
<a name="l584"></a> dz = </span><span class=cF5>AbsI64</span><span class=cF0>(z - zz);
|
|
<a name="l585"></a> </span><span class=cF1>if</span><span class=cF0> (dx > dy)
|
|
<a name="l586"></a> d_max = dx;
|
|
<a name="l587"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l588"></a> d_max = dy;
|
|
<a name="l589"></a> </span><span class=cF1>if</span><span class=cF0> (dz > d_max)
|
|
<a name="l590"></a> d_max = dz;
|
|
<a name="l591"></a> </span><span class=cF1>if</span><span class=cF0> (!d_max)
|
|
<a name="l592"></a> s *= </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>1</span><span class=cF0>;
|
|
<a name="l593"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l594"></a> {
|
|
<a name="l595"></a> s *= </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>9</span><span class=cF0>;
|
|
<a name="l596"></a> </span><span class=cF1>if</span><span class=cF0> (!</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, x, y, z</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l597"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l598"></a> xx = x;
|
|
<a name="l599"></a> yy = y;
|
|
<a name="l600"></a> zz = z;
|
|
<a name="l601"></a> }
|
|
<a name="l602"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l603"></a> x = ctrl[</span><span class=cFE>2</span><span class=cF0>].x;
|
|
<a name="l604"></a> y = ctrl[</span><span class=cFE>2</span><span class=cF0>].y;
|
|
<a name="l605"></a> z = ctrl[</span><span class=cFE>2</span><span class=cF0>].z;
|
|
<a name="l606"></a> </span><span class=cF1>if</span><span class=cF0> (</span><span class=cF7>(</span><span class=cF0>xx != x || yy != y || zz != z</span><span class=cF7>)</span><span class=cF0> && !</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, x, y, z</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l607"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l608"></a>
|
|
<a name="l609"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l610"></a>}
|
|
<a name="l611"></a>
|
|
<a name="l612"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>Bezier3</span><span class=cF0>(</span><span class=cF1>U8</span><span class=cF0> *aux_data, </span><span class=cF9>CD3I32</span><span class=cF0> *ctrl, </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF1>U8</span><span class=cF0> *aux, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z</span><span class=cF7>)</span><span class=cF0>, </span><span class=cF1>Bool</span><span class=cF0> first=</span><span class=cF3>TRUE</span><span class=cF0>)
|
|
<a name="l613"></a>{</span><span class=cF2>//Go in 3rd order bezier calling callback.</span><span class=cF0>
|
|
<a name="l614"></a> </span><span class=cF9>I64</span><span class=cF0> x, y, z, xx, yy, zz, dx, dy, dz, d_max;
|
|
<a name="l615"></a> </span><span class=cF1>F64</span><span class=cF0> x0 = ctrl[</span><span class=cFE>0</span><span class=cF0>].x,
|
|
<a name="l616"></a> y0 = ctrl[</span><span class=cFE>0</span><span class=cF0>].y,
|
|
<a name="l617"></a> z0 = ctrl[</span><span class=cFE>0</span><span class=cF0>].z,
|
|
<a name="l618"></a> x1 = ctrl[</span><span class=cFE>1</span><span class=cF0>].x - x0,
|
|
<a name="l619"></a> y1 = ctrl[</span><span class=cFE>1</span><span class=cF0>].y - y0,
|
|
<a name="l620"></a> z1 = ctrl[</span><span class=cFE>1</span><span class=cF0>].z - z0,
|
|
<a name="l621"></a> x2 = ctrl[</span><span class=cFE>2</span><span class=cF0>].x - x0,
|
|
<a name="l622"></a> y2 = ctrl[</span><span class=cFE>2</span><span class=cF0>].y - y0,
|
|
<a name="l623"></a> z2 = ctrl[</span><span class=cFE>2</span><span class=cF0>].z - z0,
|
|
<a name="l624"></a> x3 = ctrl[</span><span class=cFE>3</span><span class=cF0>].x - x0,
|
|
<a name="l625"></a> y3 = ctrl[</span><span class=cFE>3</span><span class=cF0>].y - y0,
|
|
<a name="l626"></a> z3 = ctrl[</span><span class=cFE>3</span><span class=cF0>].z - z0,
|
|
<a name="l627"></a> t, d = </span><span class=cF5>D3I32Dist</span><span class=cF0>(&ctrl[</span><span class=cFE>0</span><span class=cF0>], &ctrl[</span><span class=cFE>1</span><span class=cF0>]) +
|
|
<a name="l628"></a> </span><span class=cF5>D3I32Dist</span><span class=cF0>(&ctrl[</span><span class=cFE>1</span><span class=cF0>], &ctrl[</span><span class=cFE>2</span><span class=cF0>]) +
|
|
<a name="l629"></a> </span><span class=cF5>D3I32Dist</span><span class=cF0>(&ctrl[</span><span class=cFE>2</span><span class=cF0>], &ctrl[</span><span class=cFE>3</span><span class=cF0>]) +
|
|
<a name="l630"></a> </span><span class=cF5>D3I32Dist</span><span class=cF0>(&ctrl[</span><span class=cFE>3</span><span class=cF0>], &ctrl[</span><span class=cFE>0</span><span class=cF0>]),
|
|
<a name="l631"></a> s = </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>5</span><span class=cF0> / d, nt, t1, t2, t3;
|
|
<a name="l632"></a>
|
|
<a name="l633"></a> xx = x0;
|
|
<a name="l634"></a> yy = y0;
|
|
<a name="l635"></a> zz = z0;
|
|
<a name="l636"></a> </span><span class=cF1>if</span><span class=cF0> (first && !</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, xx, yy, zz</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l637"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l638"></a> </span><span class=cF1>for</span><span class=cF0> (t = </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>; t <= </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>; t += s)
|
|
<a name="l639"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l640"></a> nt = </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> - t;
|
|
<a name="l641"></a> t1 = t * nt * nt;
|
|
<a name="l642"></a> t2 = t * t * nt;
|
|
<a name="l643"></a> t3 = t * t * t;
|
|
<a name="l644"></a> x = x0 + x1 * t1 + x2 * t2 + x3 * t3;
|
|
<a name="l645"></a> y = y0 + y1 * t1 + y2 * t2 + y3 * t3;
|
|
<a name="l646"></a> z = z0 + z1 * t1 + z2 * t2 + z3 * t3;
|
|
<a name="l647"></a> dx = </span><span class=cF5>AbsI64</span><span class=cF0>(x - xx);
|
|
<a name="l648"></a> dy = </span><span class=cF5>AbsI64</span><span class=cF0>(y - yy);
|
|
<a name="l649"></a> dz = </span><span class=cF5>AbsI64</span><span class=cF0>(z - zz);
|
|
<a name="l650"></a> </span><span class=cF1>if</span><span class=cF0> (dx > dy)
|
|
<a name="l651"></a> d_max = dx;
|
|
<a name="l652"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l653"></a> d_max = dy;
|
|
<a name="l654"></a> </span><span class=cF1>if</span><span class=cF0> (dz > d_max)
|
|
<a name="l655"></a> d_max = dz;
|
|
<a name="l656"></a> </span><span class=cF1>if</span><span class=cF0> (!d_max)
|
|
<a name="l657"></a> s *= </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>1</span><span class=cF0>;
|
|
<a name="l658"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l659"></a> {
|
|
<a name="l660"></a> s *= </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>9</span><span class=cF0>;
|
|
<a name="l661"></a> </span><span class=cF1>if</span><span class=cF0> (!</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, x, y, z</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l662"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l663"></a> xx = x;
|
|
<a name="l664"></a> yy = y;
|
|
<a name="l665"></a> zz = z;
|
|
<a name="l666"></a> }
|
|
<a name="l667"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l668"></a> x = ctrl[</span><span class=cFE>3</span><span class=cF0>].x;
|
|
<a name="l669"></a> y = ctrl[</span><span class=cFE>3</span><span class=cF0>].y;
|
|
<a name="l670"></a> z = ctrl[</span><span class=cFE>3</span><span class=cF0>].z;
|
|
<a name="l671"></a> </span><span class=cF1>if</span><span class=cF0> (</span><span class=cF7>(</span><span class=cF0>xx != x || yy != y || zz != z</span><span class=cF7>)</span><span class=cF0> &&!</span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF0>aux_data, x, y, z</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l672"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l673"></a>
|
|
<a name="l674"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l675"></a>}
|
|
<a name="l676"></a>
|
|
<a name="l677"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>BSpline2</span><span class=cF0>(</span><span class=cF1>U8</span><span class=cF0> *aux_data, </span><span class=cF9>CD3I32</span><span class=cF0> *ctrl, </span><span class=cF9>I64</span><span class=cF0> count, </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF1>U8</span><span class=cF0> *aux, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z</span><span class=cF7>)</span><span class=cF0>, </span><span class=cF1>Bool</span><span class=cF0> closed=</span><span class=cF3>FALSE</span><span class=cF0>)
|
|
<a name="l678"></a>{</span><span class=cF2>//Go in 2nd order spline calling callback.</span><span class=cF0>
|
|
<a name="l679"></a> </span><span class=cF9>I64</span><span class=cF0> i, j;
|
|
<a name="l680"></a> </span><span class=cF9>CD3I32</span><span class=cF0> *c;
|
|
<a name="l681"></a> </span><span class=cF1>Bool</span><span class=cF0> first;
|
|
<a name="l682"></a>
|
|
<a name="l683"></a> </span><span class=cF1>if</span><span class=cF0> (count < </span><span class=cFE>3</span><span class=cF0>)
|
|
<a name="l684"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l685"></a> first = </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l686"></a> </span><span class=cF1>if</span><span class=cF0> (closed)
|
|
<a name="l687"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l688"></a> count++;
|
|
<a name="l689"></a> c = </span><span class=cF5>MAlloc</span><span class=cF0>(</span><span class=cF1>sizeof</span><span class=cF7>(</span><span class=cF9>CD3I32</span><span class=cF7>)</span><span class=cF0> * </span><span class=cF7>(</span><span class=cF0>count * </span><span class=cFE>2</span><span class=cF0> - </span><span class=cFE>1</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l690"></a> j = </span><span class=cFE>1</span><span class=cF0>;
|
|
<a name="l691"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count - </span><span class=cFE>2</span><span class=cF0>; i++)
|
|
<a name="l692"></a> {
|
|
<a name="l693"></a> c[j].x = (ctrl[i].x + ctrl[i + </span><span class=cFE>1</span><span class=cF0>].x) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l694"></a> c[j].y = (ctrl[i].y + ctrl[i + </span><span class=cFE>1</span><span class=cF0>].y) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l695"></a> c[j].z = (ctrl[i].z + ctrl[i + </span><span class=cFE>1</span><span class=cF0>].z) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l696"></a> j += </span><span class=cFE>2</span><span class=cF0>;
|
|
<a name="l697"></a> }
|
|
<a name="l698"></a> c[j].x = (ctrl[</span><span class=cFE>0</span><span class=cF0>].x + ctrl[count - </span><span class=cFE>2</span><span class=cF0>].x) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l699"></a> c[j].y = (ctrl[</span><span class=cFE>0</span><span class=cF0>].y + ctrl[count - </span><span class=cFE>2</span><span class=cF0>].y) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l700"></a> c[j].z = (ctrl[</span><span class=cFE>0</span><span class=cF0>].z + ctrl[count - </span><span class=cFE>2</span><span class=cF0>].z) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l701"></a>
|
|
<a name="l702"></a> c[</span><span class=cFE>0</span><span class=cF0>].x = (c[</span><span class=cFE>1</span><span class=cF0>].x + c[j].x) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l703"></a> c[</span><span class=cFE>0</span><span class=cF0>].y = (c[</span><span class=cFE>1</span><span class=cF0>].y + c[j].y) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l704"></a> c[</span><span class=cFE>0</span><span class=cF0>].z = (c[</span><span class=cFE>1</span><span class=cF0>].z + c[j].z) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l705"></a> j = </span><span class=cFE>2</span><span class=cF0>;
|
|
<a name="l706"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count - </span><span class=cFE>2</span><span class=cF0>; i++)
|
|
<a name="l707"></a> {
|
|
<a name="l708"></a> c[j].x = (c[j - </span><span class=cFE>1</span><span class=cF0>].x + c[j + </span><span class=cFE>1</span><span class=cF0>].x) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l709"></a> c[j].y = (c[j - </span><span class=cFE>1</span><span class=cF0>].y + c[j + </span><span class=cFE>1</span><span class=cF0>].y) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l710"></a> c[j].z = (c[j - </span><span class=cFE>1</span><span class=cF0>].z + c[j + </span><span class=cFE>1</span><span class=cF0>].z) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l711"></a> j += </span><span class=cFE>2</span><span class=cF0>;
|
|
<a name="l712"></a> }
|
|
<a name="l713"></a> c[j].x = c[</span><span class=cFE>0</span><span class=cF0>].x;
|
|
<a name="l714"></a> c[j].y = c[</span><span class=cFE>0</span><span class=cF0>].y;
|
|
<a name="l715"></a> c[j].z = c[</span><span class=cFE>0</span><span class=cF0>].z;
|
|
<a name="l716"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l717"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l718"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l719"></a> c = </span><span class=cF5>MAlloc</span><span class=cF0>(</span><span class=cF1>sizeof</span><span class=cF7>(</span><span class=cF9>CD3I32</span><span class=cF7>)</span><span class=cF0> * </span><span class=cF7>(</span><span class=cF0>count * </span><span class=cFE>2</span><span class=cF0> - </span><span class=cFE>1</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l720"></a> c[</span><span class=cFE>0</span><span class=cF0>].x = ctrl[</span><span class=cFE>0</span><span class=cF0>].x;
|
|
<a name="l721"></a> c[</span><span class=cFE>0</span><span class=cF0>].y = ctrl[</span><span class=cFE>0</span><span class=cF0>].y;
|
|
<a name="l722"></a> c[</span><span class=cFE>0</span><span class=cF0>].z = ctrl[</span><span class=cFE>0</span><span class=cF0>].z;
|
|
<a name="l723"></a> c[count * </span><span class=cFE>2</span><span class=cF0> - </span><span class=cFE>2</span><span class=cF0>].x = ctrl[count - </span><span class=cFE>1</span><span class=cF0>].x;
|
|
<a name="l724"></a> c[count * </span><span class=cFE>2</span><span class=cF0> - </span><span class=cFE>2</span><span class=cF0>].y = ctrl[count - </span><span class=cFE>1</span><span class=cF0>].y;
|
|
<a name="l725"></a> c[count * </span><span class=cFE>2</span><span class=cF0> - </span><span class=cFE>2</span><span class=cF0>].z = ctrl[count - </span><span class=cFE>1</span><span class=cF0>].z;
|
|
<a name="l726"></a> j = </span><span class=cFE>1</span><span class=cF0>;
|
|
<a name="l727"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count - </span><span class=cFE>1</span><span class=cF0>; i++)
|
|
<a name="l728"></a> {
|
|
<a name="l729"></a> c[j].x = (ctrl[i].x + ctrl[i + </span><span class=cFE>1</span><span class=cF0>].x) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l730"></a> c[j].y = (ctrl[i].y + ctrl[i + </span><span class=cFE>1</span><span class=cF0>].y) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l731"></a> c[j].z = (ctrl[i].z + ctrl[i + </span><span class=cFE>1</span><span class=cF0>].z) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l732"></a> j += </span><span class=cFE>2</span><span class=cF0>;
|
|
<a name="l733"></a> }
|
|
<a name="l734"></a> j = </span><span class=cFE>2</span><span class=cF0>;
|
|
<a name="l735"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count - </span><span class=cFE>2</span><span class=cF0>; i++)
|
|
<a name="l736"></a> {
|
|
<a name="l737"></a> c[j].x = (c[j - </span><span class=cFE>1</span><span class=cF0>].x + c[j + </span><span class=cFE>1</span><span class=cF0>].x) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l738"></a> c[j].y = (c[j - </span><span class=cFE>1</span><span class=cF0>].y + c[j + </span><span class=cFE>1</span><span class=cF0>].y) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l739"></a> c[j].z = (c[j - </span><span class=cFE>1</span><span class=cF0>].z + c[j + </span><span class=cFE>1</span><span class=cF0>].z) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l740"></a> j += </span><span class=cFE>2</span><span class=cF0>;
|
|
<a name="l741"></a> }
|
|
<a name="l742"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l743"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count * </span><span class=cFE>2</span><span class=cF0> - </span><span class=cFE>2</span><span class=cF0>; i += </span><span class=cFE>2</span><span class=cF0>)
|
|
<a name="l744"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l745"></a> </span><span class=cF1>if</span><span class=cF0> (!</span><span class=cF5>Bezier2</span><span class=cF7>(</span><span class=cF0>aux_data, &c[i], fp_plot, first</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l746"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l747"></a> first = </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l748"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l749"></a> </span><span class=cF5>Free</span><span class=cF0>(c);
|
|
<a name="l750"></a>
|
|
<a name="l751"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l752"></a>}
|
|
<a name="l753"></a>
|
|
<a name="l754"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>BSpline3</span><span class=cF0>(</span><span class=cF1>U8</span><span class=cF0> *aux_data, </span><span class=cF9>CD3I32</span><span class=cF0> *ctrl, </span><span class=cF9>I64</span><span class=cF0> count, </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF7>(</span><span class=cF0>*fp_plot</span><span class=cF7>)(</span><span class=cF1>U8</span><span class=cF0> *aux, </span><span class=cF9>I64</span><span class=cF0> x, </span><span class=cF9>I64</span><span class=cF0> y, </span><span class=cF9>I64</span><span class=cF0> z</span><span class=cF7>)</span><span class=cF0>, </span><span class=cF1>Bool</span><span class=cF0> closed=</span><span class=cF3>FALSE</span><span class=cF0>)
|
|
<a name="l755"></a>{</span><span class=cF2>//Go in 3rd order spline calling callback.</span><span class=cF0>
|
|
<a name="l756"></a> </span><span class=cF9>I64</span><span class=cF0> i, j;
|
|
<a name="l757"></a> </span><span class=cF1>F64</span><span class=cF0> x, y, z;
|
|
<a name="l758"></a> </span><span class=cF9>CD3I32</span><span class=cF0> *c;
|
|
<a name="l759"></a> </span><span class=cF1>Bool</span><span class=cF0> first;
|
|
<a name="l760"></a>
|
|
<a name="l761"></a> </span><span class=cF1>if</span><span class=cF0> (count < </span><span class=cFE>3</span><span class=cF0>)
|
|
<a name="l762"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l763"></a> first = </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l764"></a> </span><span class=cF1>if</span><span class=cF0> (closed)
|
|
<a name="l765"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l766"></a> count++;
|
|
<a name="l767"></a> c = </span><span class=cF5>MAlloc</span><span class=cF0>(</span><span class=cF1>sizeof</span><span class=cF7>(</span><span class=cF9>CD3I32</span><span class=cF7>)</span><span class=cF0> * </span><span class=cF7>(</span><span class=cF0>count * </span><span class=cFE>3</span><span class=cF0> - </span><span class=cFE>2</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l768"></a> j = </span><span class=cFE>1</span><span class=cF0>;
|
|
<a name="l769"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count - </span><span class=cFE>2</span><span class=cF0>; i++)
|
|
<a name="l770"></a> {
|
|
<a name="l771"></a> x = ctrl[i].x;
|
|
<a name="l772"></a> y = ctrl[i].y;
|
|
<a name="l773"></a> z = ctrl[i].z;
|
|
<a name="l774"></a> c[j].x = (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].x - x) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + x;
|
|
<a name="l775"></a> c[j].y = (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].y - y) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + y;
|
|
<a name="l776"></a> c[j].z = (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].z - z) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + z;
|
|
<a name="l777"></a> j++;
|
|
<a name="l778"></a> c[j].x = </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> * (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].x - x) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + x;
|
|
<a name="l779"></a> c[j].y = </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> * (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].y - y) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + y;
|
|
<a name="l780"></a> c[j].z = </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> * (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].z - z) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + z;
|
|
<a name="l781"></a> j += </span><span class=cFE>2</span><span class=cF0>;
|
|
<a name="l782"></a> }
|
|
<a name="l783"></a> x = ctrl[count - </span><span class=cFE>2</span><span class=cF0>].x;
|
|
<a name="l784"></a> y = ctrl[count - </span><span class=cFE>2</span><span class=cF0>].y;
|
|
<a name="l785"></a> z = ctrl[count - </span><span class=cFE>2</span><span class=cF0>].z;
|
|
<a name="l786"></a> c[j].x = (ctrl[</span><span class=cFE>0</span><span class=cF0>].x - x) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + x;
|
|
<a name="l787"></a> c[j].y = (ctrl[</span><span class=cFE>0</span><span class=cF0>].y - y) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + y;
|
|
<a name="l788"></a> c[j].z = (ctrl[</span><span class=cFE>0</span><span class=cF0>].z - z) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + z;
|
|
<a name="l789"></a> j++;
|
|
<a name="l790"></a> c[j].x = </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> * (ctrl[</span><span class=cFE>0</span><span class=cF0>].x - x) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + x;
|
|
<a name="l791"></a> c[j].y = </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> * (ctrl[</span><span class=cFE>0</span><span class=cF0>].y - y) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + y;
|
|
<a name="l792"></a> c[j].z = </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> * (ctrl[</span><span class=cFE>0</span><span class=cF0>].z - z) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + z;
|
|
<a name="l793"></a>
|
|
<a name="l794"></a> c[</span><span class=cFE>0</span><span class=cF0>].x = (c[</span><span class=cFE>1</span><span class=cF0>].x + c[j].x) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l795"></a> c[</span><span class=cFE>0</span><span class=cF0>].y = (c[</span><span class=cFE>1</span><span class=cF0>].y + c[j].y) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l796"></a> c[</span><span class=cFE>0</span><span class=cF0>].z = (c[</span><span class=cFE>1</span><span class=cF0>].z + c[j].z) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l797"></a>
|
|
<a name="l798"></a> j = </span><span class=cFE>3</span><span class=cF0>;
|
|
<a name="l799"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count - </span><span class=cFE>2</span><span class=cF0>; i++)
|
|
<a name="l800"></a> {
|
|
<a name="l801"></a> c[j].x = (c[j - </span><span class=cFE>1</span><span class=cF0>].x + c[j + </span><span class=cFE>1</span><span class=cF0>].x) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l802"></a> c[j].y = (c[j - </span><span class=cFE>1</span><span class=cF0>].y + c[j + </span><span class=cFE>1</span><span class=cF0>].y) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l803"></a> c[j].z = (c[j - </span><span class=cFE>1</span><span class=cF0>].z + c[j + </span><span class=cFE>1</span><span class=cF0>].z) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l804"></a> j += </span><span class=cFE>3</span><span class=cF0>;
|
|
<a name="l805"></a> }
|
|
<a name="l806"></a> c[j].x = c[</span><span class=cFE>0</span><span class=cF0>].x;
|
|
<a name="l807"></a> c[j].y = c[</span><span class=cFE>0</span><span class=cF0>].y;
|
|
<a name="l808"></a> c[j].z = c[</span><span class=cFE>0</span><span class=cF0>].z;
|
|
<a name="l809"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l810"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l811"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l812"></a> c = </span><span class=cF5>MAlloc</span><span class=cF0>(</span><span class=cF1>sizeof</span><span class=cF7>(</span><span class=cF9>CD3I32</span><span class=cF7>)</span><span class=cF0> * </span><span class=cF7>(</span><span class=cF0>count * </span><span class=cFE>3</span><span class=cF0> - </span><span class=cFE>2</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l813"></a> c[</span><span class=cFE>0</span><span class=cF0>].x = ctrl[</span><span class=cFE>0</span><span class=cF0>].x;
|
|
<a name="l814"></a> c[</span><span class=cFE>0</span><span class=cF0>].y = ctrl[</span><span class=cFE>0</span><span class=cF0>].y;
|
|
<a name="l815"></a> c[</span><span class=cFE>0</span><span class=cF0>].z = ctrl[</span><span class=cFE>0</span><span class=cF0>].z;
|
|
<a name="l816"></a> c[count * </span><span class=cFE>3</span><span class=cF0> - </span><span class=cFE>3</span><span class=cF0>].x = ctrl[count - </span><span class=cFE>1</span><span class=cF0>].x;
|
|
<a name="l817"></a> c[count * </span><span class=cFE>3</span><span class=cF0> - </span><span class=cFE>3</span><span class=cF0>].y = ctrl[count - </span><span class=cFE>1</span><span class=cF0>].y;
|
|
<a name="l818"></a> c[count * </span><span class=cFE>3</span><span class=cF0> - </span><span class=cFE>3</span><span class=cF0>].z = ctrl[count - </span><span class=cFE>1</span><span class=cF0>].z;
|
|
<a name="l819"></a> j = </span><span class=cFE>1</span><span class=cF0>;
|
|
<a name="l820"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count - </span><span class=cFE>1</span><span class=cF0>; i++)
|
|
<a name="l821"></a> {
|
|
<a name="l822"></a> x = ctrl[i].x;
|
|
<a name="l823"></a> y = ctrl[i].y;
|
|
<a name="l824"></a> z = ctrl[i].z;
|
|
<a name="l825"></a> c[j].x = (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].x - x) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + x;
|
|
<a name="l826"></a> c[j].y = (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].y - y) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + y;
|
|
<a name="l827"></a> c[j].z = (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].z - z) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + z;
|
|
<a name="l828"></a> j++;
|
|
<a name="l829"></a> c[j].x = </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> * (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].x - x) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + x;
|
|
<a name="l830"></a> c[j].y = </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> * (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].y - y) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + y;
|
|
<a name="l831"></a> c[j].z = </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> * (ctrl[i + </span><span class=cFE>1</span><span class=cF0>].z - z) / </span><span class=cFE>3</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> + z;
|
|
<a name="l832"></a> j += </span><span class=cFE>2</span><span class=cF0>;
|
|
<a name="l833"></a> }
|
|
<a name="l834"></a> j = </span><span class=cFE>3</span><span class=cF0>;
|
|
<a name="l835"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count - </span><span class=cFE>2</span><span class=cF0>; i++)
|
|
<a name="l836"></a> {
|
|
<a name="l837"></a> c[j].x = (c[j - </span><span class=cFE>1</span><span class=cF0>].x + c[j + </span><span class=cFE>1</span><span class=cF0>].x) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l838"></a> c[j].y = (c[j - </span><span class=cFE>1</span><span class=cF0>].y + c[j + </span><span class=cFE>1</span><span class=cF0>].y) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l839"></a> c[j].z = (c[j - </span><span class=cFE>1</span><span class=cF0>].z + c[j + </span><span class=cFE>1</span><span class=cF0>].z) / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l840"></a> j += </span><span class=cFE>3</span><span class=cF0>;
|
|
<a name="l841"></a> }
|
|
<a name="l842"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l843"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>0</span><span class=cF0>; i < count * </span><span class=cFE>3</span><span class=cF0> - </span><span class=cFE>3</span><span class=cF0>; i += </span><span class=cFE>3</span><span class=cF0>)
|
|
<a name="l844"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l845"></a> </span><span class=cF1>if</span><span class=cF0> (!</span><span class=cF5>Bezier3</span><span class=cF7>(</span><span class=cF0>aux_data, &c[i], fp_plot, first</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l846"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l847"></a> first = </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l848"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l849"></a> </span><span class=cF5>Free</span><span class=cF0>(c);
|
|
<a name="l850"></a>
|
|
<a name="l851"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l852"></a>}
|
|
<a name="l853"></a>
|
|
<a name="l854"></a>#</span><span class=cF1>define</span><span class=cF0> </span><span class=cF3>CC_LEFT</span><span class=cF0> </span><span class=cFE>1</span><span class=cF0>
|
|
<a name="l855"></a>#</span><span class=cF1>define</span><span class=cF0> </span><span class=cF3>CC_RIGHT</span><span class=cF0> </span><span class=cFE>2</span><span class=cF0>
|
|
<a name="l856"></a>#</span><span class=cF1>define</span><span class=cF0> </span><span class=cF3>CC_TOP</span><span class=cF0> </span><span class=cFE>4</span><span class=cF0>
|
|
<a name="l857"></a>#</span><span class=cF1>define</span><span class=cF0> </span><span class=cF3>CC_BOTTOM</span><span class=cF0> </span><span class=cFE>8</span><span class=cF0>
|
|
<a name="l858"></a>
|
|
<a name="l859"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>Bool</span><span class=cF0> </span><span class=cF5>ClipLine</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> *_x1, </span><span class=cF9>I64</span><span class=cF0> *_y1, </span><span class=cF9>I64</span><span class=cF0> *_x2, </span><span class=cF9>I64</span><span class=cF0> *_y2, </span><span class=cF9>I64</span><span class=cF0> left, </span><span class=cF9>I64</span><span class=cF0> top, </span><span class=cF9>I64</span><span class=cF0> right, </span><span class=cF9>I64</span><span class=cF0> bottom)
|
|
<a name="l860"></a>{</span><span class=cF2>//Clip x1,y1 x2,y2 with left,top,right,bottom.</span><span class=cF0>
|
|
<a name="l861"></a> </span><span class=cF9>I64</span><span class=cF0> x, y, x1 = *_x1, y1 = *_y1, x2 = *_x2, y2 = *_y2, cc, cc1, cc2;
|
|
<a name="l862"></a>
|
|
<a name="l863"></a> </span><span class=cF1>if</span><span class=cF0> (y1 > bottom)
|
|
<a name="l864"></a> cc1 = </span><span class=cF3>CC_BOTTOM</span><span class=cF0>;
|
|
<a name="l865"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (y1 < top)
|
|
<a name="l866"></a> cc1 = </span><span class=cF3>CC_TOP</span><span class=cF0>;
|
|
<a name="l867"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l868"></a> cc1 = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l869"></a> </span><span class=cF1>if</span><span class=cF0> (x1 > right)
|
|
<a name="l870"></a> cc1 |= </span><span class=cF3>CC_RIGHT</span><span class=cF0>;
|
|
<a name="l871"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (x1 < left)
|
|
<a name="l872"></a> cc1 |= </span><span class=cF3>CC_LEFT</span><span class=cF0>;
|
|
<a name="l873"></a>
|
|
<a name="l874"></a> </span><span class=cF1>if</span><span class=cF0> (y2 > bottom)
|
|
<a name="l875"></a> cc2 = </span><span class=cF3>CC_BOTTOM</span><span class=cF0>;
|
|
<a name="l876"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (y2 < top)
|
|
<a name="l877"></a> cc2 = </span><span class=cF3>CC_TOP</span><span class=cF0>;
|
|
<a name="l878"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l879"></a> cc2 = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l880"></a> </span><span class=cF1>if</span><span class=cF0> (x2 > right)
|
|
<a name="l881"></a> cc2 |= </span><span class=cF3>CC_RIGHT</span><span class=cF0>;
|
|
<a name="l882"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (x2 < left)
|
|
<a name="l883"></a> cc2 |= </span><span class=cF3>CC_LEFT</span><span class=cF0>;
|
|
<a name="l884"></a>
|
|
<a name="l885"></a> </span><span class=cF1>while</span><span class=cF0> (</span><span class=cF3>TRUE</span><span class=cF0>)
|
|
<a name="l886"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l887"></a> </span><span class=cF1>if</span><span class=cF0> (!</span><span class=cF7>(</span><span class=cF0>cc1 | cc2</span><span class=cF7>)</span><span class=cF0>)
|
|
<a name="l888"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>TRUE</span><span class=cF0>;
|
|
<a name="l889"></a> </span><span class=cF1>if</span><span class=cF0> (cc1 & cc2)
|
|
<a name="l890"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>FALSE</span><span class=cF0>;
|
|
<a name="l891"></a>
|
|
<a name="l892"></a> </span><span class=cF1>if</span><span class=cF0> (cc1)
|
|
<a name="l893"></a> cc = cc1;
|
|
<a name="l894"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l895"></a> cc = cc2;
|
|
<a name="l896"></a>
|
|
<a name="l897"></a> </span><span class=cF1>if</span><span class=cF0> (cc & </span><span class=cF3>CC_BOTTOM</span><span class=cF0>)
|
|
<a name="l898"></a> {
|
|
<a name="l899"></a> x = x1 + (x2 - x1) * (bottom - y1) / (y2 - y1);
|
|
<a name="l900"></a> y = bottom;
|
|
<a name="l901"></a> }
|
|
<a name="l902"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (cc & </span><span class=cF3>CC_TOP</span><span class=cF0>)
|
|
<a name="l903"></a> {
|
|
<a name="l904"></a> x = x1 + (x2 - x1) * (top - y1) / (y2 - y1);
|
|
<a name="l905"></a> y = top;
|
|
<a name="l906"></a> }
|
|
<a name="l907"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (cc & </span><span class=cF3>CC_RIGHT</span><span class=cF0>)
|
|
<a name="l908"></a> {
|
|
<a name="l909"></a> y = y1 + (y2 - y1) * (right - x1) / (x2 - x1);
|
|
<a name="l910"></a> x = right;
|
|
<a name="l911"></a> }
|
|
<a name="l912"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l913"></a> {
|
|
<a name="l914"></a> y = y1 + (y2 - y1) * (left - x1) / (x2 - x1);
|
|
<a name="l915"></a> x = left;
|
|
<a name="l916"></a> }
|
|
<a name="l917"></a>
|
|
<a name="l918"></a> </span><span class=cF1>if</span><span class=cF0> (cc == cc1)
|
|
<a name="l919"></a> {
|
|
<a name="l920"></a> *_x1 = x1 = x;
|
|
<a name="l921"></a> *_y1 = y1 = y;
|
|
<a name="l922"></a> </span><span class=cF1>if</span><span class=cF0> (y1 > bottom)
|
|
<a name="l923"></a> cc1 = </span><span class=cF3>CC_BOTTOM</span><span class=cF0>;
|
|
<a name="l924"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (y1 < top)
|
|
<a name="l925"></a> cc1 = </span><span class=cF3>CC_TOP</span><span class=cF0>;
|
|
<a name="l926"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l927"></a> cc1 = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l928"></a> </span><span class=cF1>if</span><span class=cF0> (x1 > right)
|
|
<a name="l929"></a> cc1 |= </span><span class=cF3>CC_RIGHT</span><span class=cF0>;
|
|
<a name="l930"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (x1 < left)
|
|
<a name="l931"></a> cc1 |= </span><span class=cF3>CC_LEFT</span><span class=cF0>;
|
|
<a name="l932"></a> }
|
|
<a name="l933"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l934"></a> {
|
|
<a name="l935"></a> *_x2 = x2 = x;
|
|
<a name="l936"></a> *_y2 = y2 = y;
|
|
<a name="l937"></a> </span><span class=cF1>if</span><span class=cF0> (y2 > bottom)
|
|
<a name="l938"></a> cc2 = </span><span class=cF3>CC_BOTTOM</span><span class=cF0>;
|
|
<a name="l939"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (y2 < top)
|
|
<a name="l940"></a> cc2 = </span><span class=cF3>CC_TOP</span><span class=cF0>;
|
|
<a name="l941"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l942"></a> cc2 = </span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l943"></a> </span><span class=cF1>if</span><span class=cF0> (x2 > right)
|
|
<a name="l944"></a> cc2 |= </span><span class=cF3>CC_RIGHT</span><span class=cF0>;
|
|
<a name="l945"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (x2 < left)
|
|
<a name="l946"></a> cc2 |= </span><span class=cF3>CC_LEFT</span><span class=cF0>;
|
|
<a name="l947"></a> }
|
|
<a name="l948"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l949"></a>}
|
|
</span></pre></body>
|
|
</html>
|