mirror of
https://github.com/Zeal-Operating-System/ZealOS.git
synced 2025-01-14 08:36:31 +00:00
dbf8647d59
Added top & right borders to RawDr. Improved spacing in some debug and compiler reporting. Fixed RawPutChar and EdLite tab width. Fixed Ui missing '0x' prefix syntax highlighter bug. Added 32BitPaint demo.
184 lines
17 KiB
HTML
Executable file
184 lines
17 KiB
HTML
Executable file
<!DOCTYPE HTML>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html;charset=US-ASCII">
|
|
<meta name="generator" content="ZealOS V0.08">
|
|
<style type="text/css">
|
|
body {background-color:#000000;}
|
|
.cF0{color:#ffffff;background-color:#000000;}
|
|
.cF1{color:#3465a4;background-color:#000000;}
|
|
.cF2{color:#4e9a06;background-color:#000000;}
|
|
.cF3{color:#06989a;background-color:#000000;}
|
|
.cF4{color:#a24444;background-color:#000000;}
|
|
.cF5{color:#75507b;background-color:#000000;}
|
|
.cF6{color:#ce982f;background-color:#000000;}
|
|
.cF7{color:#bcc0b9;background-color:#000000;}
|
|
.cF8{color:#555753;background-color:#000000;}
|
|
.cF9{color:#729fcf;background-color:#000000;}
|
|
.cFA{color:#82bc49;background-color:#000000;}
|
|
.cFB{color:#34e2e2;background-color:#000000;}
|
|
.cFC{color:#ac3535;background-color:#000000;}
|
|
.cFD{color:#ad7fa8;background-color:#000000;}
|
|
.cFE{color:#fce94f;background-color:#000000;}
|
|
.cFF{color:#000000;background-color:#000000;}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<pre style="font-family:monospace;font-size:12pt">
|
|
<a name="l1"></a><span class=cF0>#</span><span class=cF1>help_index</span><span class=cF0> </span><span class=cF6>"Math"</span><span class=cF0>
|
|
<a name="l2"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>U0</span><span class=cF0> </span><span class=cF5>R2P</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> *_mag=</span><span class=cF3>NULL</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> *_arg=</span><span class=cF3>NULL</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> x, </span><span class=cF1>F64</span><span class=cF0> y)
|
|
<a name="l3"></a>{</span><span class=cF2>//Rect to polar</span><span class=cF0>
|
|
<a name="l4"></a></span><span class=cF2>//Returns angle in range (-pi,pi]</span><span class=cF0>
|
|
<a name="l5"></a> </span><span class=cF1>if</span><span class=cF0> (_arg)
|
|
<a name="l6"></a> *_arg = </span><span class=cF5>Arg</span><span class=cF0>(x, y);
|
|
<a name="l7"></a> </span><span class=cF1>if</span><span class=cF0> (_mag)
|
|
<a name="l8"></a> *_mag = </span><span class=cF5>Sqrt</span><span class=cF0>(x * x + y * y);
|
|
<a name="l9"></a>}
|
|
<a name="l10"></a>
|
|
<a name="l11"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>U0</span><span class=cF0> </span><span class=cF5>P2R</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> *_x=</span><span class=cF3>NULL</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> *_y=</span><span class=cF3>NULL</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> mag, </span><span class=cF1>F64</span><span class=cF0> arg)
|
|
<a name="l12"></a>{</span><span class=cF2>//Polar to Rect</span><span class=cF0>
|
|
<a name="l13"></a> </span><span class=cF1>if</span><span class=cF0> (_x)
|
|
<a name="l14"></a> *_x = mag * </span><span class=cF5>Cos</span><span class=cF0>(arg);
|
|
<a name="l15"></a> </span><span class=cF1>if</span><span class=cF0> (_y)
|
|
<a name="l16"></a> *_y = mag * </span><span class=cF5>Sin</span><span class=cF0>(arg);
|
|
<a name="l17"></a>}
|
|
<a name="l18"></a>
|
|
<a name="l19"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>Wrap</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> theta, </span><span class=cF1>F64</span><span class=cF0> base=-</span><span class=cF3>pi</span><span class=cF0>)
|
|
<a name="l20"></a>{</span><span class=cF2>//Returns angle in range [base,base+2*pi)</span><span class=cF0>
|
|
<a name="l21"></a> </span><span class=cF1>F64</span><span class=cF0> res = theta % (</span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0>);
|
|
<a name="l22"></a>
|
|
<a name="l23"></a> </span><span class=cF1>if</span><span class=cF0> (res >= base + </span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0>)
|
|
<a name="l24"></a> res -= </span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0>;
|
|
<a name="l25"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (res < base)
|
|
<a name="l26"></a> res += </span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0>;
|
|
<a name="l27"></a>
|
|
<a name="l28"></a> </span><span class=cF1>return</span><span class=cF0> res;
|
|
<a name="l29"></a>}
|
|
<a name="l30"></a>
|
|
<a name="l31"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> </span><span class=cF5>DistSqrI64</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> x1, </span><span class=cF9>I64</span><span class=cF0> y1, </span><span class=cF9>I64</span><span class=cF0> x2, </span><span class=cF9>I64</span><span class=cF0> y2)
|
|
<a name="l32"></a>{</span><span class=cF2>//Distance-squared between 2 points.</span><span class=cF0>
|
|
<a name="l33"></a> </span><span class=cF9>I64</span><span class=cF0> dx = x1 - x2, dy = y1 - y2;
|
|
<a name="l34"></a>
|
|
<a name="l35"></a> </span><span class=cF1>return</span><span class=cF0> dx * dx + dy * dy;
|
|
<a name="l36"></a>}
|
|
<a name="l37"></a>
|
|
<a name="l38"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>ASin</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> s)
|
|
<a name="l39"></a>{</span><span class=cF2>//Arc Sin (Inverse Sin).</span><span class=cF0>
|
|
<a name="l40"></a> </span><span class=cF1>F64</span><span class=cF0> c;
|
|
<a name="l41"></a>
|
|
<a name="l42"></a> c = s * s;
|
|
<a name="l43"></a> </span><span class=cF1>if</span><span class=cF0> (c >= </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l44"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>pi</span><span class=cF0> / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l45"></a> c = </span><span class=cF5>Sqrt</span><span class=cF0>(</span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> - c);
|
|
<a name="l46"></a>
|
|
<a name="l47"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>ATan</span><span class=cF0>(s / c);
|
|
<a name="l48"></a>}
|
|
<a name="l49"></a>
|
|
<a name="l50"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>ACos</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> c)
|
|
<a name="l51"></a>{</span><span class=cF2>//Arc Cos (Inverse Cos).</span><span class=cF0>
|
|
<a name="l52"></a> </span><span class=cF1>F64</span><span class=cF0> s;
|
|
<a name="l53"></a>
|
|
<a name="l54"></a> </span><span class=cF1>if</span><span class=cF0> (!c)
|
|
<a name="l55"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>pi</span><span class=cF0> / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l56"></a> s = c * c;
|
|
<a name="l57"></a> </span><span class=cF1>if</span><span class=cF0> (s >= </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l58"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l59"></a> s = </span><span class=cF5>Sqrt</span><span class=cF0>(</span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> - s);
|
|
<a name="l60"></a>
|
|
<a name="l61"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>ATan</span><span class=cF0>(s / c);
|
|
<a name="l62"></a>}
|
|
<a name="l63"></a>
|
|
<a name="l64"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>Sinh</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> x)
|
|
<a name="l65"></a>{</span><span class=cF2>//Hyperbolic Sine.</span><span class=cF0>
|
|
<a name="l66"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>5</span><span class=cF0> * (</span><span class=cF5>Exp</span><span class=cF7>(</span><span class=cF0>x</span><span class=cF7>)</span><span class=cF0> - </span><span class=cF5>Exp</span><span class=cF7>(</span><span class=cF0>-x</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l67"></a>}
|
|
<a name="l68"></a>
|
|
<a name="l69"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>Cosh</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> x)
|
|
<a name="l70"></a>{</span><span class=cF2>//Hyperbolic Cosine.</span><span class=cF0>
|
|
<a name="l71"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>5</span><span class=cF0> * (</span><span class=cF5>Exp</span><span class=cF7>(</span><span class=cF0>x</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>Exp</span><span class=cF7>(</span><span class=cF0>-x</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l72"></a>}
|
|
<a name="l73"></a>
|
|
<a name="l74"></a>#</span><span class=cF1>help_index</span><span class=cF0> </span><span class=cF6>"Math/Complex;Data Types/Complex"</span><span class=cF0>
|
|
<a name="l75"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CAdd</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *sum, </span><span class=cF9>Complex</span><span class=cF0> *n1, </span><span class=cF9>Complex</span><span class=cF0> *n2)
|
|
<a name="l76"></a>{</span><span class=cF2>//sum=n1+n2</span><span class=cF0>
|
|
<a name="l77"></a> sum->x = n1->x + n2->x;
|
|
<a name="l78"></a> sum->y = n1->y + n2->y;
|
|
<a name="l79"></a>
|
|
<a name="l80"></a> </span><span class=cF1>return</span><span class=cF0> sum;
|
|
<a name="l81"></a>}
|
|
<a name="l82"></a>
|
|
<a name="l83"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CSub</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *diff, </span><span class=cF9>Complex</span><span class=cF0> *n1, </span><span class=cF9>Complex</span><span class=cF0> *n2)
|
|
<a name="l84"></a>{</span><span class=cF2>//diff=n1-n2</span><span class=cF0>
|
|
<a name="l85"></a> diff->x = n1->x - n2->x;
|
|
<a name="l86"></a> diff->y = n1->y - n2->y;
|
|
<a name="l87"></a>
|
|
<a name="l88"></a> </span><span class=cF1>return</span><span class=cF0> diff;
|
|
<a name="l89"></a>}
|
|
<a name="l90"></a>
|
|
<a name="l91"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CMul</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *prod, </span><span class=cF9>Complex</span><span class=cF0> *n1, </span><span class=cF9>Complex</span><span class=cF0> *n2)
|
|
<a name="l92"></a>{</span><span class=cF2>//prod=n1*n2</span><span class=cF0>
|
|
<a name="l93"></a> prod->x = n1->x * n2->x - n1->y * n2->y;
|
|
<a name="l94"></a> prod->y = n1->x * n2->y + n1->y * n2->x;
|
|
<a name="l95"></a>
|
|
<a name="l96"></a> </span><span class=cF1>return</span><span class=cF0> prod;
|
|
<a name="l97"></a>}
|
|
<a name="l98"></a>
|
|
<a name="l99"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CDiv</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *quot, </span><span class=cF9>Complex</span><span class=cF0> *n1, </span><span class=cF9>Complex</span><span class=cF0> *n2)
|
|
<a name="l100"></a>{</span><span class=cF2>//quot=n1/n2</span><span class=cF0>
|
|
<a name="l101"></a> </span><span class=cF1>F64</span><span class=cF0> m1, arg1, m2, arg2;
|
|
<a name="l102"></a>
|
|
<a name="l103"></a> </span><span class=cF5>R2P</span><span class=cF0>(&m1, &arg1, n1->x, n1->y);
|
|
<a name="l104"></a> </span><span class=cF5>R2P</span><span class=cF0>(&m2, &arg2, n2->x, n2->y);
|
|
<a name="l105"></a> m1 /= m2;
|
|
<a name="l106"></a> arg1 -= arg2;
|
|
<a name="l107"></a> quot->x = m1 * </span><span class=cF5>Cos</span><span class=cF0>(arg1);
|
|
<a name="l108"></a> quot->y = m1 * </span><span class=cF5>Sin</span><span class=cF0>(arg1);
|
|
<a name="l109"></a>
|
|
<a name="l110"></a> </span><span class=cF1>return</span><span class=cF0> quot;
|
|
<a name="l111"></a>}
|
|
<a name="l112"></a>
|
|
<a name="l113"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CScale</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *dst, </span><span class=cF1>F64</span><span class=cF0> s)
|
|
<a name="l114"></a>{</span><span class=cF2>//dst*=s</span><span class=cF0>
|
|
<a name="l115"></a> dst->x *= s;
|
|
<a name="l116"></a> dst->y *= s;
|
|
<a name="l117"></a>
|
|
<a name="l118"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l119"></a>}
|
|
<a name="l120"></a>
|
|
<a name="l121"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CCopy</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *dst, </span><span class=cF9>Complex</span><span class=cF0> *src)
|
|
<a name="l122"></a>{</span><span class=cF2>//dst=src</span><span class=cF0>
|
|
<a name="l123"></a> dst->x = src->x;
|
|
<a name="l124"></a> dst->y = src->y;
|
|
<a name="l125"></a>
|
|
<a name="l126"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l127"></a>}
|
|
<a name="l128"></a>
|
|
<a name="l129"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CEqu</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *dst, </span><span class=cF1>F64</span><span class=cF0> x, </span><span class=cF1>F64</span><span class=cF0> y)
|
|
<a name="l130"></a>{</span><span class=cF2>//dst=(x,y)</span><span class=cF0>
|
|
<a name="l131"></a> dst->x = x;
|
|
<a name="l132"></a> dst->y = y;
|
|
<a name="l133"></a>
|
|
<a name="l134"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l135"></a>}
|
|
<a name="l136"></a>
|
|
<a name="l137"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CPoly</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *dst, </span><span class=cF9>I64</span><span class=cF0> n, </span><span class=cF9>Complex</span><span class=cF0> *zeros, </span><span class=cF9>Complex</span><span class=cF0> *x)
|
|
<a name="l138"></a>{</span><span class=cF2>//Eval complex polynomial</span><span class=cF0>
|
|
<a name="l139"></a> </span><span class=cF9>I64</span><span class=cF0> i;
|
|
<a name="l140"></a> </span><span class=cF9>Complex</span><span class=cF0> n1, n2;
|
|
<a name="l141"></a>
|
|
<a name="l142"></a> </span><span class=cF1>if</span><span class=cF0> (n > </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l143"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l144"></a> </span><span class=cF5>CSub</span><span class=cF0>(dst, x, &zeros[</span><span class=cFE>0</span><span class=cF0>]);
|
|
<a name="l145"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>1</span><span class=cF0>; i < n; i++)
|
|
<a name="l146"></a> {
|
|
<a name="l147"></a> </span><span class=cF5>CCopy</span><span class=cF0>(&n1, dst);
|
|
<a name="l148"></a> </span><span class=cF5>CMul</span><span class=cF0>(dst, &n1, </span><span class=cF5>CSub</span><span class=cF7>(</span><span class=cF0>&n2, x, &zeros[i]</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l149"></a> }
|
|
<a name="l150"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l151"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l152"></a> </span><span class=cF5>CEqu</span><span class=cF0>(dst, </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>, </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>);
|
|
<a name="l153"></a>
|
|
<a name="l154"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l155"></a>}
|
|
</span></pre></body>
|
|
</html>
|