mirror of
https://github.com/Zeal-Operating-System/ZealOS.git
synced 2024-12-29 00:36:32 +00:00
1b75d91002
Add arg to SATARep to specify drive types to show. Add checks in AHCIPortInit to verify port signatures, add helper method to get signatures from port.
184 lines
17 KiB
HTML
Executable file
184 lines
17 KiB
HTML
Executable file
<!DOCTYPE HTML>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html;charset=US-ASCII">
|
|
<meta name="generator" content="ZealOS V0.13">
|
|
<style type="text/css">
|
|
body {background-color:#fef1f0;}
|
|
.cF0{color:#000000;background-color:#fef1f0;}
|
|
.cF1{color:#0148a4;background-color:#fef1f0;}
|
|
.cF2{color:#3b7901;background-color:#fef1f0;}
|
|
.cF3{color:#057c7e;background-color:#fef1f0;}
|
|
.cF4{color:#bb2020;background-color:#fef1f0;}
|
|
.cF5{color:#9e42ae;background-color:#fef1f0;}
|
|
.cF6{color:#b57901;background-color:#fef1f0;}
|
|
.cF7{color:#b2b6af;background-color:#fef1f0;}
|
|
.cF8{color:#555753;background-color:#fef1f0;}
|
|
.cF9{color:#678fbb;background-color:#fef1f0;}
|
|
.cFA{color:#82bc49;background-color:#fef1f0;}
|
|
.cFB{color:#0097a2;background-color:#fef1f0;}
|
|
.cFC{color:#e26a6a;background-color:#fef1f0;}
|
|
.cFD{color:#c671bc;background-color:#fef1f0;}
|
|
.cFE{color:#c7ab00;background-color:#fef1f0;}
|
|
.cFF{color:#fef1f0;background-color:#fef1f0;}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<pre style="font-family:monospace;font-size:12pt">
|
|
<a name="l1"></a><span class=cF0>#</span><span class=cF1>help_index</span><span class=cF0> </span><span class=cF6>"Math"</span><span class=cF0>
|
|
<a name="l2"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>U0</span><span class=cF0> </span><span class=cF5>R2P</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> *_mag=</span><span class=cF3>NULL</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> *_arg=</span><span class=cF3>NULL</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> x, </span><span class=cF1>F64</span><span class=cF0> y)
|
|
<a name="l3"></a>{</span><span class=cF2>//Rect to polar</span><span class=cF0>
|
|
<a name="l4"></a></span><span class=cF2>//Returns angle in range (-pi,pi]</span><span class=cF0>
|
|
<a name="l5"></a> </span><span class=cF1>if</span><span class=cF0> (_arg)
|
|
<a name="l6"></a> *_arg = </span><span class=cF5>Arg</span><span class=cF0>(x, y);
|
|
<a name="l7"></a> </span><span class=cF1>if</span><span class=cF0> (_mag)
|
|
<a name="l8"></a> *_mag = </span><span class=cF5>Sqrt</span><span class=cF0>(x * x + y * y);
|
|
<a name="l9"></a>}
|
|
<a name="l10"></a>
|
|
<a name="l11"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>U0</span><span class=cF0> </span><span class=cF5>P2R</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> *_x=</span><span class=cF3>NULL</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> *_y=</span><span class=cF3>NULL</span><span class=cF0>, </span><span class=cF1>F64</span><span class=cF0> mag, </span><span class=cF1>F64</span><span class=cF0> arg)
|
|
<a name="l12"></a>{</span><span class=cF2>//Polar to Rect</span><span class=cF0>
|
|
<a name="l13"></a> </span><span class=cF1>if</span><span class=cF0> (_x)
|
|
<a name="l14"></a> *_x = mag * </span><span class=cF5>Cos</span><span class=cF0>(arg);
|
|
<a name="l15"></a> </span><span class=cF1>if</span><span class=cF0> (_y)
|
|
<a name="l16"></a> *_y = mag * </span><span class=cF5>Sin</span><span class=cF0>(arg);
|
|
<a name="l17"></a>}
|
|
<a name="l18"></a>
|
|
<a name="l19"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>Wrap</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> theta, </span><span class=cF1>F64</span><span class=cF0> base=-</span><span class=cF3>pi</span><span class=cF0>)
|
|
<a name="l20"></a>{</span><span class=cF2>//Returns angle in range [base,base+2*pi)</span><span class=cF0>
|
|
<a name="l21"></a> </span><span class=cF1>F64</span><span class=cF0> res = theta % (</span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0>);
|
|
<a name="l22"></a>
|
|
<a name="l23"></a> </span><span class=cF1>if</span><span class=cF0> (res >= base + </span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0>)
|
|
<a name="l24"></a> res -= </span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0>;
|
|
<a name="l25"></a> </span><span class=cF1>else</span><span class=cF0> </span><span class=cF1>if</span><span class=cF0> (res < base)
|
|
<a name="l26"></a> res += </span><span class=cFE>2</span><span class=cF0> * </span><span class=cF3>pi</span><span class=cF0>;
|
|
<a name="l27"></a>
|
|
<a name="l28"></a> </span><span class=cF1>return</span><span class=cF0> res;
|
|
<a name="l29"></a>}
|
|
<a name="l30"></a>
|
|
<a name="l31"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>I64</span><span class=cF0> </span><span class=cF5>DistSqrI64</span><span class=cF0>(</span><span class=cF9>I64</span><span class=cF0> x1, </span><span class=cF9>I64</span><span class=cF0> y1, </span><span class=cF9>I64</span><span class=cF0> x2, </span><span class=cF9>I64</span><span class=cF0> y2)
|
|
<a name="l32"></a>{</span><span class=cF2>//Distance-squared between 2 points.</span><span class=cF0>
|
|
<a name="l33"></a> </span><span class=cF9>I64</span><span class=cF0> dx = x1 - x2, dy = y1 - y2;
|
|
<a name="l34"></a>
|
|
<a name="l35"></a> </span><span class=cF1>return</span><span class=cF0> dx * dx + dy * dy;
|
|
<a name="l36"></a>}
|
|
<a name="l37"></a>
|
|
<a name="l38"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>ASin</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> s)
|
|
<a name="l39"></a>{</span><span class=cF2>//Arc Sin (Inverse Sin).</span><span class=cF0>
|
|
<a name="l40"></a> </span><span class=cF1>F64</span><span class=cF0> c;
|
|
<a name="l41"></a>
|
|
<a name="l42"></a> c = s * s;
|
|
<a name="l43"></a> </span><span class=cF1>if</span><span class=cF0> (c >= </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l44"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>pi</span><span class=cF0> / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l45"></a> c = </span><span class=cF5>Sqrt</span><span class=cF0>(</span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> - c);
|
|
<a name="l46"></a>
|
|
<a name="l47"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>ATan</span><span class=cF0>(s / c);
|
|
<a name="l48"></a>}
|
|
<a name="l49"></a>
|
|
<a name="l50"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>ACos</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> c)
|
|
<a name="l51"></a>{</span><span class=cF2>//Arc Cos (Inverse Cos).</span><span class=cF0>
|
|
<a name="l52"></a> </span><span class=cF1>F64</span><span class=cF0> s;
|
|
<a name="l53"></a>
|
|
<a name="l54"></a> </span><span class=cF1>if</span><span class=cF0> (!c)
|
|
<a name="l55"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF3>pi</span><span class=cF0> / </span><span class=cFE>2</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l56"></a> s = c * c;
|
|
<a name="l57"></a> </span><span class=cF1>if</span><span class=cF0> (s >= </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l58"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>;
|
|
<a name="l59"></a> s = </span><span class=cF5>Sqrt</span><span class=cF0>(</span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0> - s);
|
|
<a name="l60"></a>
|
|
<a name="l61"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cF5>ATan</span><span class=cF0>(s / c);
|
|
<a name="l62"></a>}
|
|
<a name="l63"></a>
|
|
<a name="l64"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>Sinh</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> x)
|
|
<a name="l65"></a>{</span><span class=cF2>//Hyperbolic Sine.</span><span class=cF0>
|
|
<a name="l66"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>5</span><span class=cF0> * (</span><span class=cF5>Exp</span><span class=cF7>(</span><span class=cF0>x</span><span class=cF7>)</span><span class=cF0> - </span><span class=cF5>Exp</span><span class=cF7>(</span><span class=cF0>-x</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l67"></a>}
|
|
<a name="l68"></a>
|
|
<a name="l69"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF1>F64</span><span class=cF0> </span><span class=cF5>Cosh</span><span class=cF0>(</span><span class=cF1>F64</span><span class=cF0> x)
|
|
<a name="l70"></a>{</span><span class=cF2>//Hyperbolic Cosine.</span><span class=cF0>
|
|
<a name="l71"></a> </span><span class=cF1>return</span><span class=cF0> </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>5</span><span class=cF0> * (</span><span class=cF5>Exp</span><span class=cF7>(</span><span class=cF0>x</span><span class=cF7>)</span><span class=cF0> + </span><span class=cF5>Exp</span><span class=cF7>(</span><span class=cF0>-x</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l72"></a>}
|
|
<a name="l73"></a>
|
|
<a name="l74"></a>#</span><span class=cF1>help_index</span><span class=cF0> </span><span class=cF6>"Math/Complex;Data Types/Complex"</span><span class=cF0>
|
|
<a name="l75"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CAdd</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *sum, </span><span class=cF9>Complex</span><span class=cF0> *n1, </span><span class=cF9>Complex</span><span class=cF0> *n2)
|
|
<a name="l76"></a>{</span><span class=cF2>//sum=n1+n2</span><span class=cF0>
|
|
<a name="l77"></a> sum->x = n1->x + n2->x;
|
|
<a name="l78"></a> sum->y = n1->y + n2->y;
|
|
<a name="l79"></a>
|
|
<a name="l80"></a> </span><span class=cF1>return</span><span class=cF0> sum;
|
|
<a name="l81"></a>}
|
|
<a name="l82"></a>
|
|
<a name="l83"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CSub</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *diff, </span><span class=cF9>Complex</span><span class=cF0> *n1, </span><span class=cF9>Complex</span><span class=cF0> *n2)
|
|
<a name="l84"></a>{</span><span class=cF2>//diff=n1-n2</span><span class=cF0>
|
|
<a name="l85"></a> diff->x = n1->x - n2->x;
|
|
<a name="l86"></a> diff->y = n1->y - n2->y;
|
|
<a name="l87"></a>
|
|
<a name="l88"></a> </span><span class=cF1>return</span><span class=cF0> diff;
|
|
<a name="l89"></a>}
|
|
<a name="l90"></a>
|
|
<a name="l91"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CMul</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *prod, </span><span class=cF9>Complex</span><span class=cF0> *n1, </span><span class=cF9>Complex</span><span class=cF0> *n2)
|
|
<a name="l92"></a>{</span><span class=cF2>//prod=n1*n2</span><span class=cF0>
|
|
<a name="l93"></a> prod->x = n1->x * n2->x - n1->y * n2->y;
|
|
<a name="l94"></a> prod->y = n1->x * n2->y + n1->y * n2->x;
|
|
<a name="l95"></a>
|
|
<a name="l96"></a> </span><span class=cF1>return</span><span class=cF0> prod;
|
|
<a name="l97"></a>}
|
|
<a name="l98"></a>
|
|
<a name="l99"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CDiv</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *quot, </span><span class=cF9>Complex</span><span class=cF0> *n1, </span><span class=cF9>Complex</span><span class=cF0> *n2)
|
|
<a name="l100"></a>{</span><span class=cF2>//quot=n1/n2</span><span class=cF0>
|
|
<a name="l101"></a> </span><span class=cF1>F64</span><span class=cF0> m1, arg1, m2, arg2;
|
|
<a name="l102"></a>
|
|
<a name="l103"></a> </span><span class=cF5>R2P</span><span class=cF0>(&m1, &arg1, n1->x, n1->y);
|
|
<a name="l104"></a> </span><span class=cF5>R2P</span><span class=cF0>(&m2, &arg2, n2->x, n2->y);
|
|
<a name="l105"></a> m1 /= m2;
|
|
<a name="l106"></a> arg1 -= arg2;
|
|
<a name="l107"></a> quot->x = m1 * </span><span class=cF5>Cos</span><span class=cF0>(arg1);
|
|
<a name="l108"></a> quot->y = m1 * </span><span class=cF5>Sin</span><span class=cF0>(arg1);
|
|
<a name="l109"></a>
|
|
<a name="l110"></a> </span><span class=cF1>return</span><span class=cF0> quot;
|
|
<a name="l111"></a>}
|
|
<a name="l112"></a>
|
|
<a name="l113"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CScale</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *dst, </span><span class=cF1>F64</span><span class=cF0> s)
|
|
<a name="l114"></a>{</span><span class=cF2>//dst*=s</span><span class=cF0>
|
|
<a name="l115"></a> dst->x *= s;
|
|
<a name="l116"></a> dst->y *= s;
|
|
<a name="l117"></a>
|
|
<a name="l118"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l119"></a>}
|
|
<a name="l120"></a>
|
|
<a name="l121"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CCopy</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *dst, </span><span class=cF9>Complex</span><span class=cF0> *src)
|
|
<a name="l122"></a>{</span><span class=cF2>//dst=src</span><span class=cF0>
|
|
<a name="l123"></a> dst->x = src->x;
|
|
<a name="l124"></a> dst->y = src->y;
|
|
<a name="l125"></a>
|
|
<a name="l126"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l127"></a>}
|
|
<a name="l128"></a>
|
|
<a name="l129"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CEqu</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *dst, </span><span class=cF1>F64</span><span class=cF0> x, </span><span class=cF1>F64</span><span class=cF0> y)
|
|
<a name="l130"></a>{</span><span class=cF2>//dst=(x,y)</span><span class=cF0>
|
|
<a name="l131"></a> dst->x = x;
|
|
<a name="l132"></a> dst->y = y;
|
|
<a name="l133"></a>
|
|
<a name="l134"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l135"></a>}
|
|
<a name="l136"></a>
|
|
<a name="l137"></a></span><span class=cF1>public</span><span class=cF0> </span><span class=cF9>Complex</span><span class=cF0> *</span><span class=cF5>CPoly</span><span class=cF0>(</span><span class=cF9>Complex</span><span class=cF0> *dst, </span><span class=cF9>I64</span><span class=cF0> n, </span><span class=cF9>Complex</span><span class=cF0> *zeros, </span><span class=cF9>Complex</span><span class=cF0> *x)
|
|
<a name="l138"></a>{</span><span class=cF2>//Eval complex polynomial</span><span class=cF0>
|
|
<a name="l139"></a> </span><span class=cF9>I64</span><span class=cF0> i;
|
|
<a name="l140"></a> </span><span class=cF9>Complex</span><span class=cF0> n1, n2;
|
|
<a name="l141"></a>
|
|
<a name="l142"></a> </span><span class=cF1>if</span><span class=cF0> (n > </span><span class=cFE>0</span><span class=cF0>)
|
|
<a name="l143"></a> </span><span class=cF7>{</span><span class=cF0>
|
|
<a name="l144"></a> </span><span class=cF5>CSub</span><span class=cF0>(dst, x, &zeros[</span><span class=cFE>0</span><span class=cF0>]);
|
|
<a name="l145"></a> </span><span class=cF1>for</span><span class=cF0> (i = </span><span class=cFE>1</span><span class=cF0>; i < n; i++)
|
|
<a name="l146"></a> {
|
|
<a name="l147"></a> </span><span class=cF5>CCopy</span><span class=cF0>(&n1, dst);
|
|
<a name="l148"></a> </span><span class=cF5>CMul</span><span class=cF0>(dst, &n1, </span><span class=cF5>CSub</span><span class=cF7>(</span><span class=cF0>&n2, x, &zeros[i]</span><span class=cF7>)</span><span class=cF0>);
|
|
<a name="l149"></a> }
|
|
<a name="l150"></a> </span><span class=cF7>}</span><span class=cF0>
|
|
<a name="l151"></a> </span><span class=cF1>else</span><span class=cF0>
|
|
<a name="l152"></a> </span><span class=cF5>CEqu</span><span class=cF0>(dst, </span><span class=cFE>1</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>, </span><span class=cFE>0</span><span class=cF0>.</span><span class=cFE>0</span><span class=cF0>);
|
|
<a name="l153"></a>
|
|
<a name="l154"></a> </span><span class=cF1>return</span><span class=cF0> dst;
|
|
<a name="l155"></a>}
|
|
</span></pre></body>
|
|
</html>
|