/*The magic pairs problem: Let SumFact(n) be the sum of factors of n. Find all n1,n2 in a range such that SumFact(n1)-n1-1==n2 and SumFact(n2)-n2-1==n1 ----------------------------------------------------- To find SumFact(k), start with prime factorization: k=(p1^n1)(p2^n2) ... (pN^nN) THEN, SumFact(k)=(1+p1+p1^2...p1^n1)*(1+p2+p2^2...p2^n2)* (1+pN+pN^2...pN^nN) PROOF: Do a couple examples -- it's obvious: 48=2^4*3 SumFact(48)=(1+2+4+8+16)*(1+3)=1+2+4+8+16+3+6+12+24+48 75=3*5^2 SumFact(75)=(1+3)*(1+5+25) =1+5+25+3+15+75 Corollary: SumFact(k)=SumFact(p1^n1)*SumFact(p2^n2)*...*SumFact(pN^nN) */ //Primes are needed to sqrt(N). Therefore, we can use U32. class PowPrime { I64 n; I64 sumfact; //Sumfacts for powers of primes are needed beyond sqrt(N) }; class Prime { U32 prime,pow_count; PowPrime *pp; }; I64 *PrimesNew(I64 N,I64 *_sqrt_primes,I64 *_cbrt_primes) { I64 i,j,sqrt=Ceil(Sqrt(N)),cbrt=Ceil(N`(1/3.0)),sqrt_sqrt=Ceil(Sqrt(sqrt)), sqrt_primes=0,cbrt_primes=0; U8 *s=CAlloc((sqrt+1+7)/8); Prime *primes,*p; for (i=2;i<=sqrt_sqrt;i++) { if (!Bt(s,i)) { j=i*2; while (j<=sqrt) { Bts(s,j); j+=i; } } } for (i=2;i<=sqrt;i++) if (!Bt(s,i)) { sqrt_primes++; //Count primes if (i<=cbrt) cbrt_primes++; } p=primes=CAlloc(sqrt_primes*sizeof(Prime)); for (i=2;i<=sqrt;i++) if (!Bt(s,i)) { p->prime=i; p++; } Free(s); *_sqrt_primes=sqrt_primes; *_cbrt_primes=cbrt_primes; return primes; } PowPrime *PowPrimesNew(I64 N,I64 sqrt_primes,Prime *primes,I64 *_num_powprimes) { I64 i,j,k,sf,num_powprimes=0; Prime *p; PowPrime *powprimes,*pp; p=primes; for (i=0;iprime)); p++; } p=primes; pp=powprimes=MAlloc(num_powprimes*sizeof(PowPrime)); for (i=0;ipp=pp; j=p->prime; k=1; sf=1; while (jn=j; pp->sumfact=sf; j*=p->prime; pp++; p->pow_count++; } p++; } *_num_powprimes=num_powprimes; return powprimes; } I64 SumFact(I64 n,I64 sqrt_primes,Prime *p) { I64 i,k,sf=1; PowPrime *pp; if (n<2) return 1; for (i=0;iprime)) { n/=p->prime; k++; } if (k) { pp=p->pp+(k-1); sf*=pp->sumfact; if (n==1) return sf; } p++; } return sf*(1+n); //Prime } Bool TestSumFact(I64 n,I64 target_sf,I64 sqrt_primes,I64 cbrt_primes,Prime *p) { I64 i=0,k,b,x1,x2; PowPrime *pp; F64 disc; if (n<2) return FALSE; while (i++prime)) { n/=p->prime; k++; } if (k) { pp=p->pp+(k-1); if (ModU64(&target_sf,pp->sumfact)) return FALSE; if (n==1) { if (target_sf==1) return TRUE; else return FALSE; } } p++; } /* At this point we have three possible cases to test 1)n==p1 ->sf==(1+p1) ? 2)n==p1*p1 ->sf==(1+p1+p1^2) ? 3)n==p1*p2 ->sf==(p1+1)*(p2+1) ? */ if (1+n==target_sf) { while (i++prime)) { n/=p->prime; k++; } if (k) { pp=p->pp+(k-1); if (ModU64(&target_sf,pp->sumfact)) return FALSE; if (n==1) { if (target_sf==1) return TRUE; else return FALSE; } } p++; } if (1+n==target_sf) return TRUE; else return FALSE; } k=Sqrt(n); if (k*k==n) { if (1+k+n==target_sf) return TRUE; else return FALSE; } else { // n==p1*p2 -> sf==(p1+1)*(p2+1) ? where p1!=1 && p2!=1 // if p1==1 || p2==1, it is FALSE because we checked a single prime above. // sf==(p1+1)*(n/p1+1) // sf==n+p1+n/p1+1 // sf*p1==n*p1+p1^2+n+p1 // p1^2+(n+1-sf)*p1+n=0 // x=(-b+/-sqrt(b^2-4ac))/2a // a=1 // x=(-b+/-sqrt(b^2-4c))/2 // b=n+1-sf;c=n b=n+1-target_sf; // x=(-b+/-sqrt(b^2-4n))/2 disc=b*b-4*n; if (disc<0) return FALSE; x1=(-b-Sqrt(disc))/2; if (x1<=1) return FALSE; x2=n/x1; if (x2>1 && x1*x2==n) return TRUE; else return FALSE; } } U0 PutFactors(I64 n) //For debugging { I64 i,k,sqrt=Ceil(Sqrt(n)); for (i=2;i<=sqrt;i++) { k=0; while (!(n%i)) { k++; n/=i; } if (k) { "%d",i; if (k>1) "^%d",k; '' CH_SPACE; } } if (n!=1) "%d ",n; } class RangeJob { CDoc *doc; I64 num,lo,hi,N,sqrt_primes,cbrt_primes; Prime *primes; CJob *cmd; } rj[mp_count]; I64 TestCoreSubRange(RangeJob *r) { I64 i,j,m,n,n2,sf,res=0,range=r->hi-r->lo, *sumfacts=MAlloc(range*sizeof(I64)), *residue =MAlloc(range*sizeof(I64)); U16 *pow_count =MAlloc(range*sizeof(U16)); Prime *p=r->primes; PowPrime *pp; MemSetI64(sumfacts,1,range); for (n=r->lo;nhi;n++) residue[n-r->lo]=n; for (j=0;jsqrt_primes;j++) { MemSet(pow_count,0,range*sizeof(U16)); m=1; for (i=0;ipow_count;i++) { m*=p->prime; n=m-r->lo%m; while (npp[i-1]; sumfacts[n]*=pp->sumfact; residue [n]/=pp->n; } p++; } for (n=0;nlo;nhi;n++) { sf=sumfacts[n-r->lo]; n2=sf-n-1; if (nN) { if (r->lo<=n2hi && sumfacts[n2-r->lo]-n2-1==n || TestSumFact(n2,sf,r->sqrt_primes,r->cbrt_primes,r->primes)) { DocPrint(r->doc,"%u:%u\n",n,sf-n-1); res++; } } } Free(pow_count); Free(residue); Free(sumfacts); return res; } #define CORE_SUB_RANGE 0x1000 I64 TestCoreRange(RangeJob *r) { I64 i,n,res=0; RangeJob rj; MemCopy(&rj,r,sizeof(RangeJob)); for (i=r->lo;ihi;i+=CORE_SUB_RANGE) { rj.lo=i; rj.hi=i+CORE_SUB_RANGE; if (rj.hi>r->hi) rj.hi=r->hi; res+=TestCoreSubRange(&rj); n=rj.hi-rj.lo; lock {progress1+=n;} Yield; } return res; } I64 MagicPairs(I64 N) { F64 t0=tS; I64 res=0; I64 sqrt_primes,cbrt_primes,num_powprimes, i,k,n=(N-1)/mp_count+1; Prime *primes=PrimesNew(N,&sqrt_primes,&cbrt_primes); PowPrime *powprimes=PowPrimesNew(N,sqrt_primes,primes,&num_powprimes); "N:%u SqrtPrimes:%u CbrtPrimes:%u PowersOfPrimes:%u\n", N,sqrt_primes,cbrt_primes,num_powprimes; progress1=0; *progress1_desc=0; progress1_max=N; k=2; for (i=0;iN) k=N; rj[i].hi=k; rj[i].N=N; rj[i].sqrt_primes=sqrt_primes; rj[i].cbrt_primes=cbrt_primes; rj[i].primes=primes; rj[i].cmd=JobQueue(&TestCoreRange,&rj[i],mp_count-1-i,0); } for (i=0;i